Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation
Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, trave...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2001-11, Vol.86 (5), p.2597-2604 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2604 |
---|---|
container_issue | 5 |
container_start_page | 2597 |
container_title | Journal of neurophysiology |
container_volume | 86 |
creator | Li, Y Hough, C J Suh, S W Sarvey, J M Frederickson, C J |
description | Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger. |
doi_str_mv | 10.1152/jn.2001.86.5.2597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72263535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72263535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p122t-a814c8d0739c62505604620793cbe605105f79818543f907cbdcc3bd257695543</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxXNQ3HX1A3iRnESR1km6SdqjLP6DBUH04qWkaepmaZOYpIe9-NktusocHsyb-T1mEDojkBPC6M3W5hSA5CXPWU5ZJQ7QHIDSrAAhZug4xi0ACAb0CM0I4VXJlmyOvl6kNy1OQdrYOyWTcRa7Dr_bS3p9hbvgBuyDjjsrfTIKJx0GY2UfsbHJYe9i-vc2xvsJMXjZY6vH4GzEsps2sN_sonG9-zBq8mIyw9j_RJ2gw26C6dO9LtDb_d3r6jFbPz88rW7XmSeUpkyWZKnKFkRRKU4ZMA5LTkFUhWo0B0aAdaIqyXRT0VUgVNMqVTQtZYJXbGou0MUv1wf3OeqY6sFEpfteWu3GWAtKecGmWqDz_eDYDLqtfTCDDLv672PFN95Kbfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72263535</pqid></control><display><type>article</type><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</creator><creatorcontrib>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</creatorcontrib><description>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</description><identifier>ISSN: 0022-3077</identifier><identifier>DOI: 10.1152/jn.2001.86.5.2597</identifier><identifier>PMID: 11698545</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials - physiology ; Animals ; Biological Transport - physiology ; Calcium - metabolism ; Electric Stimulation - methods ; Extracellular Space - metabolism ; Hippocampus - cytology ; Hippocampus - metabolism ; Male ; Mossy Fibers, Hippocampal - physiology ; Neurons - metabolism ; Presynaptic Terminals - metabolism ; Rats ; Rats, Sprague-Dawley ; Sodium - physiology ; Synapses - metabolism ; Zinc - metabolism</subject><ispartof>Journal of neurophysiology, 2001-11, Vol.86 (5), p.2597-2604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11698545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Hough, C J</creatorcontrib><creatorcontrib>Suh, S W</creatorcontrib><creatorcontrib>Sarvey, J M</creatorcontrib><creatorcontrib>Frederickson, C J</creatorcontrib><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Transport - physiology</subject><subject>Calcium - metabolism</subject><subject>Electric Stimulation - methods</subject><subject>Extracellular Space - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Male</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>Neurons - metabolism</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sodium - physiology</subject><subject>Synapses - metabolism</subject><subject>Zinc - metabolism</subject><issn>0022-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9LxDAQxXNQ3HX1A3iRnESR1km6SdqjLP6DBUH04qWkaepmaZOYpIe9-NktusocHsyb-T1mEDojkBPC6M3W5hSA5CXPWU5ZJQ7QHIDSrAAhZug4xi0ACAb0CM0I4VXJlmyOvl6kNy1OQdrYOyWTcRa7Dr_bS3p9hbvgBuyDjjsrfTIKJx0GY2UfsbHJYe9i-vc2xvsJMXjZY6vH4GzEsps2sN_sonG9-zBq8mIyw9j_RJ2gw26C6dO9LtDb_d3r6jFbPz88rW7XmSeUpkyWZKnKFkRRKU4ZMA5LTkFUhWo0B0aAdaIqyXRT0VUgVNMqVTQtZYJXbGou0MUv1wf3OeqY6sFEpfteWu3GWAtKecGmWqDz_eDYDLqtfTCDDLv672PFN95Kbfw</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>Li, Y</creator><creator>Hough, C J</creator><creator>Suh, S W</creator><creator>Sarvey, J M</creator><creator>Frederickson, C J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><author>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p122t-a814c8d0739c62505604620793cbe605105f79818543f907cbdcc3bd257695543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Transport - physiology</topic><topic>Calcium - metabolism</topic><topic>Electric Stimulation - methods</topic><topic>Extracellular Space - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Male</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>Neurons - metabolism</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sodium - physiology</topic><topic>Synapses - metabolism</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Hough, C J</creatorcontrib><creatorcontrib>Suh, S W</creatorcontrib><creatorcontrib>Sarvey, J M</creatorcontrib><creatorcontrib>Frederickson, C J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y</au><au>Hough, C J</au><au>Suh, S W</au><au>Sarvey, J M</au><au>Frederickson, C J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2001-11</date><risdate>2001</risdate><volume>86</volume><issue>5</issue><spage>2597</spage><epage>2604</epage><pages>2597-2604</pages><issn>0022-3077</issn><abstract>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</abstract><cop>United States</cop><pmid>11698545</pmid><doi>10.1152/jn.2001.86.5.2597</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2001-11, Vol.86 (5), p.2597-2604 |
issn | 0022-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_72263535 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Action Potentials - physiology Animals Biological Transport - physiology Calcium - metabolism Electric Stimulation - methods Extracellular Space - metabolism Hippocampus - cytology Hippocampus - metabolism Male Mossy Fibers, Hippocampal - physiology Neurons - metabolism Presynaptic Terminals - metabolism Rats Rats, Sprague-Dawley Sodium - physiology Synapses - metabolism Zinc - metabolism |
title | Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20translocation%20of%20Zn(2+)%20from%20presynaptic%20terminals%20into%20postsynaptic%20hippocampal%20neurons%20after%20physiological%20stimulation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Li,%20Y&rft.date=2001-11&rft.volume=86&rft.issue=5&rft.spage=2597&rft.epage=2604&rft.pages=2597-2604&rft.issn=0022-3077&rft_id=info:doi/10.1152/jn.2001.86.5.2597&rft_dat=%3Cproquest_pubme%3E72263535%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72263535&rft_id=info:pmid/11698545&rfr_iscdi=true |