Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation

Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, trave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2001-11, Vol.86 (5), p.2597-2604
Hauptverfasser: Li, Y, Hough, C J, Suh, S W, Sarvey, J M, Frederickson, C J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2604
container_issue 5
container_start_page 2597
container_title Journal of neurophysiology
container_volume 86
creator Li, Y
Hough, C J
Suh, S W
Sarvey, J M
Frederickson, C J
description Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.
doi_str_mv 10.1152/jn.2001.86.5.2597
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72263535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72263535</sourcerecordid><originalsourceid>FETCH-LOGICAL-p122t-a814c8d0739c62505604620793cbe605105f79818543f907cbdcc3bd257695543</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxXNQ3HX1A3iRnESR1km6SdqjLP6DBUH04qWkaepmaZOYpIe9-NktusocHsyb-T1mEDojkBPC6M3W5hSA5CXPWU5ZJQ7QHIDSrAAhZug4xi0ACAb0CM0I4VXJlmyOvl6kNy1OQdrYOyWTcRa7Dr_bS3p9hbvgBuyDjjsrfTIKJx0GY2UfsbHJYe9i-vc2xvsJMXjZY6vH4GzEsps2sN_sonG9-zBq8mIyw9j_RJ2gw26C6dO9LtDb_d3r6jFbPz88rW7XmSeUpkyWZKnKFkRRKU4ZMA5LTkFUhWo0B0aAdaIqyXRT0VUgVNMqVTQtZYJXbGou0MUv1wf3OeqY6sFEpfteWu3GWAtKecGmWqDz_eDYDLqtfTCDDLv672PFN95Kbfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72263535</pqid></control><display><type>article</type><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</creator><creatorcontrib>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</creatorcontrib><description>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</description><identifier>ISSN: 0022-3077</identifier><identifier>DOI: 10.1152/jn.2001.86.5.2597</identifier><identifier>PMID: 11698545</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials - physiology ; Animals ; Biological Transport - physiology ; Calcium - metabolism ; Electric Stimulation - methods ; Extracellular Space - metabolism ; Hippocampus - cytology ; Hippocampus - metabolism ; Male ; Mossy Fibers, Hippocampal - physiology ; Neurons - metabolism ; Presynaptic Terminals - metabolism ; Rats ; Rats, Sprague-Dawley ; Sodium - physiology ; Synapses - metabolism ; Zinc - metabolism</subject><ispartof>Journal of neurophysiology, 2001-11, Vol.86 (5), p.2597-2604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11698545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Hough, C J</creatorcontrib><creatorcontrib>Suh, S W</creatorcontrib><creatorcontrib>Sarvey, J M</creatorcontrib><creatorcontrib>Frederickson, C J</creatorcontrib><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Transport - physiology</subject><subject>Calcium - metabolism</subject><subject>Electric Stimulation - methods</subject><subject>Extracellular Space - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Male</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>Neurons - metabolism</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sodium - physiology</subject><subject>Synapses - metabolism</subject><subject>Zinc - metabolism</subject><issn>0022-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9LxDAQxXNQ3HX1A3iRnESR1km6SdqjLP6DBUH04qWkaepmaZOYpIe9-NktusocHsyb-T1mEDojkBPC6M3W5hSA5CXPWU5ZJQ7QHIDSrAAhZug4xi0ACAb0CM0I4VXJlmyOvl6kNy1OQdrYOyWTcRa7Dr_bS3p9hbvgBuyDjjsrfTIKJx0GY2UfsbHJYe9i-vc2xvsJMXjZY6vH4GzEsps2sN_sonG9-zBq8mIyw9j_RJ2gw26C6dO9LtDb_d3r6jFbPz88rW7XmSeUpkyWZKnKFkRRKU4ZMA5LTkFUhWo0B0aAdaIqyXRT0VUgVNMqVTQtZYJXbGou0MUv1wf3OeqY6sFEpfteWu3GWAtKecGmWqDz_eDYDLqtfTCDDLv672PFN95Kbfw</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>Li, Y</creator><creator>Hough, C J</creator><creator>Suh, S W</creator><creator>Sarvey, J M</creator><creator>Frederickson, C J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</title><author>Li, Y ; Hough, C J ; Suh, S W ; Sarvey, J M ; Frederickson, C J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p122t-a814c8d0739c62505604620793cbe605105f79818543f907cbdcc3bd257695543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Transport - physiology</topic><topic>Calcium - metabolism</topic><topic>Electric Stimulation - methods</topic><topic>Extracellular Space - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Male</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>Neurons - metabolism</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sodium - physiology</topic><topic>Synapses - metabolism</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Hough, C J</creatorcontrib><creatorcontrib>Suh, S W</creatorcontrib><creatorcontrib>Sarvey, J M</creatorcontrib><creatorcontrib>Frederickson, C J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y</au><au>Hough, C J</au><au>Suh, S W</au><au>Sarvey, J M</au><au>Frederickson, C J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2001-11</date><risdate>2001</risdate><volume>86</volume><issue>5</issue><spage>2597</spage><epage>2604</epage><pages>2597-2604</pages><issn>0022-3077</issn><abstract>Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.</abstract><cop>United States</cop><pmid>11698545</pmid><doi>10.1152/jn.2001.86.5.2597</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2001-11, Vol.86 (5), p.2597-2604
issn 0022-3077
language eng
recordid cdi_proquest_miscellaneous_72263535
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Action Potentials - physiology
Animals
Biological Transport - physiology
Calcium - metabolism
Electric Stimulation - methods
Extracellular Space - metabolism
Hippocampus - cytology
Hippocampus - metabolism
Male
Mossy Fibers, Hippocampal - physiology
Neurons - metabolism
Presynaptic Terminals - metabolism
Rats
Rats, Sprague-Dawley
Sodium - physiology
Synapses - metabolism
Zinc - metabolism
title Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20translocation%20of%20Zn(2+)%20from%20presynaptic%20terminals%20into%20postsynaptic%20hippocampal%20neurons%20after%20physiological%20stimulation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Li,%20Y&rft.date=2001-11&rft.volume=86&rft.issue=5&rft.spage=2597&rft.epage=2604&rft.pages=2597-2604&rft.issn=0022-3077&rft_id=info:doi/10.1152/jn.2001.86.5.2597&rft_dat=%3Cproquest_pubme%3E72263535%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72263535&rft_id=info:pmid/11698545&rfr_iscdi=true