Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis

13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-09, Vol.97 (19), p.10371-10376
Hauptverfasser: Ash, E L, Sudmeier, J L, Day, R M, Vincent, M, Torchilin, E V, Haddad, K C, Bradshaw, E M, Sanford, D G, Bachovchin, W W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10376
container_issue 19
container_start_page 10371
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Ash, E L
Sudmeier, J L
Day, R M
Vincent, M
Torchilin, E V
Haddad, K C
Bradshaw, E M
Sanford, D G
Bachovchin, W W
description 13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72260451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72260451</sourcerecordid><originalsourceid>FETCH-LOGICAL-p543-a07139042bf5f28b7833f7108649ceadaeb446150091929a2961e343f5c4d8be3</originalsourceid><addsrcrecordid>eNo1kE9Lw0AQxXNQbK1-BZmTtIeU3ezmn9CDBDVCtSD1HDbJxK4ku2smEfpF_LxG1NNjeO83zLwTb85YEPuJDOTMOyd6Z4ylYcLOvBlnaSJDIebe16sZaVQt8Byen16gOmCnq2mmg24GAhqds_0Ay1zTCrIlOtKtNSvg6_V6t9lkkPulNfUNuN46SxPZ2B56VNWgrfHrXn-igV6bN2ha7aDD6qCMpg60AcLJwB90QEUIlRpUeyRNF95po1rCyz9dePv7u32W-9vdw2N2u_VdKIWvWMxFymRQNmETJGWcCNHEnCWRTCtUtcJSyoiH0988DVIVpBFHIUUTVrJOShQL7_p37XTBx4g0FJ2mCttWGbQjFXEQREyGfApe_QXHssO6cL3uVH8s_osU36EDbaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72260451</pqid></control><display><type>article</type><title>Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ash, E L ; Sudmeier, J L ; Day, R M ; Vincent, M ; Torchilin, E V ; Haddad, K C ; Bradshaw, E M ; Sanford, D G ; Bachovchin, W W</creator><creatorcontrib>Ash, E L ; Sudmeier, J L ; Day, R M ; Vincent, M ; Torchilin, E V ; Haddad, K C ; Bradshaw, E M ; Sanford, D G ; Bachovchin, W W</creatorcontrib><description>13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. &amp; Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. &amp; Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.</description><identifier>ISSN: 0027-8424</identifier><identifier>PMID: 10984533</identifier><language>eng</language><publisher>United States</publisher><subject>Catalysis ; Histidine - chemistry ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; Protons ; Serine Endopeptidases - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-09, Vol.97 (19), p.10371-10376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10984533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ash, E L</creatorcontrib><creatorcontrib>Sudmeier, J L</creatorcontrib><creatorcontrib>Day, R M</creatorcontrib><creatorcontrib>Vincent, M</creatorcontrib><creatorcontrib>Torchilin, E V</creatorcontrib><creatorcontrib>Haddad, K C</creatorcontrib><creatorcontrib>Bradshaw, E M</creatorcontrib><creatorcontrib>Sanford, D G</creatorcontrib><creatorcontrib>Bachovchin, W W</creatorcontrib><title>Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. &amp; Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. &amp; Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.</description><subject>Catalysis</subject><subject>Histidine - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Conformation</subject><subject>Protons</subject><subject>Serine Endopeptidases - chemistry</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE9Lw0AQxXNQbK1-BZmTtIeU3ezmn9CDBDVCtSD1HDbJxK4ku2smEfpF_LxG1NNjeO83zLwTb85YEPuJDOTMOyd6Z4ylYcLOvBlnaSJDIebe16sZaVQt8Byen16gOmCnq2mmg24GAhqds_0Ay1zTCrIlOtKtNSvg6_V6t9lkkPulNfUNuN46SxPZ2B56VNWgrfHrXn-igV6bN2ha7aDD6qCMpg60AcLJwB90QEUIlRpUeyRNF95po1rCyz9dePv7u32W-9vdw2N2u_VdKIWvWMxFymRQNmETJGWcCNHEnCWRTCtUtcJSyoiH0988DVIVpBFHIUUTVrJOShQL7_p37XTBx4g0FJ2mCttWGbQjFXEQREyGfApe_QXHssO6cL3uVH8s_osU36EDbaU</recordid><startdate>20000912</startdate><enddate>20000912</enddate><creator>Ash, E L</creator><creator>Sudmeier, J L</creator><creator>Day, R M</creator><creator>Vincent, M</creator><creator>Torchilin, E V</creator><creator>Haddad, K C</creator><creator>Bradshaw, E M</creator><creator>Sanford, D G</creator><creator>Bachovchin, W W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20000912</creationdate><title>Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis</title><author>Ash, E L ; Sudmeier, J L ; Day, R M ; Vincent, M ; Torchilin, E V ; Haddad, K C ; Bradshaw, E M ; Sanford, D G ; Bachovchin, W W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p543-a07139042bf5f28b7833f7108649ceadaeb446150091929a2961e343f5c4d8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Catalysis</topic><topic>Histidine - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Conformation</topic><topic>Protons</topic><topic>Serine Endopeptidases - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ash, E L</creatorcontrib><creatorcontrib>Sudmeier, J L</creatorcontrib><creatorcontrib>Day, R M</creatorcontrib><creatorcontrib>Vincent, M</creatorcontrib><creatorcontrib>Torchilin, E V</creatorcontrib><creatorcontrib>Haddad, K C</creatorcontrib><creatorcontrib>Bradshaw, E M</creatorcontrib><creatorcontrib>Sanford, D G</creatorcontrib><creatorcontrib>Bachovchin, W W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ash, E L</au><au>Sudmeier, J L</au><au>Day, R M</au><au>Vincent, M</au><au>Torchilin, E V</au><au>Haddad, K C</au><au>Bradshaw, E M</au><au>Sanford, D G</au><au>Bachovchin, W W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-09-12</date><risdate>2000</risdate><volume>97</volume><issue>19</issue><spage>10371</spage><epage>10376</epage><pages>10371-10376</pages><issn>0027-8424</issn><abstract>13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. &amp; Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. &amp; Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.</abstract><cop>United States</cop><pmid>10984533</pmid><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-09, Vol.97 (19), p.10371-10376
issn 0027-8424
language eng
recordid cdi_proquest_miscellaneous_72260451
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Catalysis
Histidine - chemistry
Hydrogen Bonding
Magnetic Resonance Spectroscopy
Molecular Conformation
Protons
Serine Endopeptidases - chemistry
title Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%201H%20NMR%20chemical%20shifts%20support%20(His)%20C(epsilon)%201...O==C%20H-bond:%20proposal%20for%20reaction-driven%20ring%20flip%20mechanism%20in%20serine%20protease%20catalysis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ash,%20E%20L&rft.date=2000-09-12&rft.volume=97&rft.issue=19&rft.spage=10371&rft.epage=10376&rft.pages=10371-10376&rft.issn=0027-8424&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E72260451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72260451&rft_id=info:pmid/10984533&rfr_iscdi=true