Nonparametric and Parametric Estimation for a Linear Germination-Growth Model

Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2000-09, Vol.56 (3), p.755-760
Hauptverfasser: Chiu, S. N., Quine, M. P., Stewart, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 755
container_title Biometrics
container_volume 56
creator Chiu, S. N.
Quine, M. P.
Stewart, M.
description Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.
doi_str_mv 10.1111/j.0006-341X.2000.00755.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72256398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2676918</jstor_id><sourcerecordid>2676918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EokvhHyCIOHDLMrZjJz5wKKuyVNptQW0pt5E3ccAhiRc7q27_PU5TLYgTvnhG872nmUdIQmFO43vXzAFApjyj3-YslrHNhZjvH5EZFRlNIWPwmMwO0BF5FkITWyWAPSVHFFQhGGUzsj53_VZ73ZnB2zLRfZV8_tOehsF2erCuT2rnE52sbG-0T5bGd7a_H6RL726HH8naVaZ9Tp7Uug3mxcN_TK4_nl4tPqWri-XZ4mSVloIJkfINB54LKlSuawk8U6qqqa4VK6ucqY2kACXnBa84N6CpLHhNC6g2UmVZZkp-TN5Ovlvvfu1MGLCzoTRtq3vjdgFzxoTkqojgm3_Axu18H3dDxqjMeQ4iQsUEld6F4E2NWx_P9ndIAce8scExShyjxDFvvM8b91H66sF_t-lM9ZdwCjgC7yfg1rbm7r-N8cPZxTpWUf9y0jdhcP6gZzKXio73pdPYhsHsD2Ptf-J4nMCb8yVeXgFbwM0X_Br51xNfa4f6u7cBry8ZUA5QSAGx-A1-vK5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221673705</pqid></control><display><type>article</type><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</creator><creatorcontrib>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</creatorcontrib><description>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2000.00755.x</identifier><identifier>PMID: 10985212</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Biometry - methods ; Boolean data ; Boolean model ; DNA replication ; Estimation methods ; Estimators ; Germination ; Germination-growth process ; Inhibition ; Likelihood Functions ; Maximum likelihood estimation ; Maximum likelihood estimators ; Models, Biological ; Models, Neurological ; Models, Statistical ; Molecules ; Musical intervals ; Neurobiology ; Neurotransmitter Agents - physiology ; Nucleation ; Plant Development ; Poisson process ; Seeds - physiology ; Statistics, Nonparametric ; Stochastic Processes ; Synapses - physiology ; Synaptic transmission</subject><ispartof>Biometrics, 2000-09, Vol.56 (3), p.755-760</ispartof><rights>Copyright 2000 The International Biometric Society</rights><rights>Copyright International Biometric Society Sep 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</citedby><cites>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2676918$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2676918$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10985212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, S. N.</creatorcontrib><creatorcontrib>Quine, M. P.</creatorcontrib><creatorcontrib>Stewart, M.</creatorcontrib><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</description><subject>Animals</subject><subject>Biometry - methods</subject><subject>Boolean data</subject><subject>Boolean model</subject><subject>DNA replication</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Germination</subject><subject>Germination-growth process</subject><subject>Inhibition</subject><subject>Likelihood Functions</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Molecules</subject><subject>Musical intervals</subject><subject>Neurobiology</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Nucleation</subject><subject>Plant Development</subject><subject>Poisson process</subject><subject>Seeds - physiology</subject><subject>Statistics, Nonparametric</subject><subject>Stochastic Processes</subject><subject>Synapses - physiology</subject><subject>Synaptic transmission</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkEFv1DAQhS0EokvhHyCIOHDLMrZjJz5wKKuyVNptQW0pt5E3ccAhiRc7q27_PU5TLYgTvnhG872nmUdIQmFO43vXzAFApjyj3-YslrHNhZjvH5EZFRlNIWPwmMwO0BF5FkITWyWAPSVHFFQhGGUzsj53_VZ73ZnB2zLRfZV8_tOehsF2erCuT2rnE52sbG-0T5bGd7a_H6RL726HH8naVaZ9Tp7Uug3mxcN_TK4_nl4tPqWri-XZ4mSVloIJkfINB54LKlSuawk8U6qqqa4VK6ucqY2kACXnBa84N6CpLHhNC6g2UmVZZkp-TN5Ovlvvfu1MGLCzoTRtq3vjdgFzxoTkqojgm3_Axu18H3dDxqjMeQ4iQsUEld6F4E2NWx_P9ndIAce8scExShyjxDFvvM8b91H66sF_t-lM9ZdwCjgC7yfg1rbm7r-N8cPZxTpWUf9y0jdhcP6gZzKXio73pdPYhsHsD2Ptf-J4nMCb8yVeXgFbwM0X_Br51xNfa4f6u7cBry8ZUA5QSAGx-A1-vK5E</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Chiu, S. N.</creator><creator>Quine, M. P.</creator><creator>Stewart, M.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200009</creationdate><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><author>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biometry - methods</topic><topic>Boolean data</topic><topic>Boolean model</topic><topic>DNA replication</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Germination</topic><topic>Germination-growth process</topic><topic>Inhibition</topic><topic>Likelihood Functions</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Molecules</topic><topic>Musical intervals</topic><topic>Neurobiology</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Nucleation</topic><topic>Plant Development</topic><topic>Poisson process</topic><topic>Seeds - physiology</topic><topic>Statistics, Nonparametric</topic><topic>Stochastic Processes</topic><topic>Synapses - physiology</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, S. N.</creatorcontrib><creatorcontrib>Quine, M. P.</creatorcontrib><creatorcontrib>Stewart, M.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, S. N.</au><au>Quine, M. P.</au><au>Stewart, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2000-09</date><risdate>2000</risdate><volume>56</volume><issue>3</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>10985212</pmid><doi>10.1111/j.0006-341X.2000.00755.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2000-09, Vol.56 (3), p.755-760
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_72256398
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics
subjects Animals
Biometry - methods
Boolean data
Boolean model
DNA replication
Estimation methods
Estimators
Germination
Germination-growth process
Inhibition
Likelihood Functions
Maximum likelihood estimation
Maximum likelihood estimators
Models, Biological
Models, Neurological
Models, Statistical
Molecules
Musical intervals
Neurobiology
Neurotransmitter Agents - physiology
Nucleation
Plant Development
Poisson process
Seeds - physiology
Statistics, Nonparametric
Stochastic Processes
Synapses - physiology
Synaptic transmission
title Nonparametric and Parametric Estimation for a Linear Germination-Growth Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20and%20Parametric%20Estimation%20for%20a%20Linear%20Germination-Growth%20Model&rft.jtitle=Biometrics&rft.au=Chiu,%20S.%20N.&rft.date=2000-09&rft.volume=56&rft.issue=3&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2000.00755.x&rft_dat=%3Cjstor_proqu%3E2676918%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221673705&rft_id=info:pmid/10985212&rft_jstor_id=2676918&rfr_iscdi=true