Nonparametric and Parametric Estimation for a Linear Germination-Growth Model
Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed...
Gespeichert in:
Veröffentlicht in: | Biometrics 2000-09, Vol.56 (3), p.755-760 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 3 |
container_start_page | 755 |
container_title | Biometrics |
container_volume | 56 |
creator | Chiu, S. N. Quine, M. P. Stewart, M. |
description | Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used. |
doi_str_mv | 10.1111/j.0006-341X.2000.00755.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72256398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2676918</jstor_id><sourcerecordid>2676918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EokvhHyCIOHDLMrZjJz5wKKuyVNptQW0pt5E3ccAhiRc7q27_PU5TLYgTvnhG872nmUdIQmFO43vXzAFApjyj3-YslrHNhZjvH5EZFRlNIWPwmMwO0BF5FkITWyWAPSVHFFQhGGUzsj53_VZ73ZnB2zLRfZV8_tOehsF2erCuT2rnE52sbG-0T5bGd7a_H6RL726HH8naVaZ9Tp7Uug3mxcN_TK4_nl4tPqWri-XZ4mSVloIJkfINB54LKlSuawk8U6qqqa4VK6ucqY2kACXnBa84N6CpLHhNC6g2UmVZZkp-TN5Ovlvvfu1MGLCzoTRtq3vjdgFzxoTkqojgm3_Axu18H3dDxqjMeQ4iQsUEld6F4E2NWx_P9ndIAce8scExShyjxDFvvM8b91H66sF_t-lM9ZdwCjgC7yfg1rbm7r-N8cPZxTpWUf9y0jdhcP6gZzKXio73pdPYhsHsD2Ptf-J4nMCb8yVeXgFbwM0X_Br51xNfa4f6u7cBry8ZUA5QSAGx-A1-vK5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221673705</pqid></control><display><type>article</type><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</creator><creatorcontrib>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</creatorcontrib><description>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2000.00755.x</identifier><identifier>PMID: 10985212</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Biometry - methods ; Boolean data ; Boolean model ; DNA replication ; Estimation methods ; Estimators ; Germination ; Germination-growth process ; Inhibition ; Likelihood Functions ; Maximum likelihood estimation ; Maximum likelihood estimators ; Models, Biological ; Models, Neurological ; Models, Statistical ; Molecules ; Musical intervals ; Neurobiology ; Neurotransmitter Agents - physiology ; Nucleation ; Plant Development ; Poisson process ; Seeds - physiology ; Statistics, Nonparametric ; Stochastic Processes ; Synapses - physiology ; Synaptic transmission</subject><ispartof>Biometrics, 2000-09, Vol.56 (3), p.755-760</ispartof><rights>Copyright 2000 The International Biometric Society</rights><rights>Copyright International Biometric Society Sep 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</citedby><cites>FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2676918$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2676918$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10985212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, S. N.</creatorcontrib><creatorcontrib>Quine, M. P.</creatorcontrib><creatorcontrib>Stewart, M.</creatorcontrib><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</description><subject>Animals</subject><subject>Biometry - methods</subject><subject>Boolean data</subject><subject>Boolean model</subject><subject>DNA replication</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Germination</subject><subject>Germination-growth process</subject><subject>Inhibition</subject><subject>Likelihood Functions</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Molecules</subject><subject>Musical intervals</subject><subject>Neurobiology</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Nucleation</subject><subject>Plant Development</subject><subject>Poisson process</subject><subject>Seeds - physiology</subject><subject>Statistics, Nonparametric</subject><subject>Stochastic Processes</subject><subject>Synapses - physiology</subject><subject>Synaptic transmission</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkEFv1DAQhS0EokvhHyCIOHDLMrZjJz5wKKuyVNptQW0pt5E3ccAhiRc7q27_PU5TLYgTvnhG872nmUdIQmFO43vXzAFApjyj3-YslrHNhZjvH5EZFRlNIWPwmMwO0BF5FkITWyWAPSVHFFQhGGUzsj53_VZ73ZnB2zLRfZV8_tOehsF2erCuT2rnE52sbG-0T5bGd7a_H6RL726HH8naVaZ9Tp7Uug3mxcN_TK4_nl4tPqWri-XZ4mSVloIJkfINB54LKlSuawk8U6qqqa4VK6ucqY2kACXnBa84N6CpLHhNC6g2UmVZZkp-TN5Ovlvvfu1MGLCzoTRtq3vjdgFzxoTkqojgm3_Axu18H3dDxqjMeQ4iQsUEld6F4E2NWx_P9ndIAce8scExShyjxDFvvM8b91H66sF_t-lM9ZdwCjgC7yfg1rbm7r-N8cPZxTpWUf9y0jdhcP6gZzKXio73pdPYhsHsD2Ptf-J4nMCb8yVeXgFbwM0X_Br51xNfa4f6u7cBry8ZUA5QSAGx-A1-vK5E</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Chiu, S. N.</creator><creator>Quine, M. P.</creator><creator>Stewart, M.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200009</creationdate><title>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</title><author>Chiu, S. N. ; Quine, M. P. ; Stewart, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-3b303751597af603499df1af92cd729b6100c3383d33e0a1683f180db69444ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biometry - methods</topic><topic>Boolean data</topic><topic>Boolean model</topic><topic>DNA replication</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Germination</topic><topic>Germination-growth process</topic><topic>Inhibition</topic><topic>Likelihood Functions</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Molecules</topic><topic>Musical intervals</topic><topic>Neurobiology</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Nucleation</topic><topic>Plant Development</topic><topic>Poisson process</topic><topic>Seeds - physiology</topic><topic>Statistics, Nonparametric</topic><topic>Stochastic Processes</topic><topic>Synapses - physiology</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, S. N.</creatorcontrib><creatorcontrib>Quine, M. P.</creatorcontrib><creatorcontrib>Stewart, M.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, S. N.</au><au>Quine, M. P.</au><au>Stewart, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric and Parametric Estimation for a Linear Germination-Growth Model</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2000-09</date><risdate>2000</risdate><volume>56</volume><issue>3</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Seeds are planted on the interval [0, L] at various locations. Each seed has a location x and a potential germination time tε [0, [infinity]), and it is assumed that the collection of such (x, t) pairs forms a Poisson process in [0, L] x [0, [infinity]) with intensity measure dxdΛ(t). From each seed that germinates, an inhibiting region grows bidirectionally at rate 2v. These regions inhibit germination of any seed in the region with a later potential germination time. Thus, seeds only germinate in the uninhibited part of [0, L]. We want to estimate Λ on the basis of one or more realizations of the process, the data being the locations and germination times of the germinated seeds. We derive the maximum likelihood estimator of v and a nonparametric estimator of Λ and describe methods of obtaining parametric estimates from it, illustrating these with reference to gamma densities. Simulation results are described and the methods applied to some neurobiological data. An Appendix outlines the S-PLUS code used.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>10985212</pmid><doi>10.1111/j.0006-341X.2000.00755.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2000-09, Vol.56 (3), p.755-760 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_72256398 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics |
subjects | Animals Biometry - methods Boolean data Boolean model DNA replication Estimation methods Estimators Germination Germination-growth process Inhibition Likelihood Functions Maximum likelihood estimation Maximum likelihood estimators Models, Biological Models, Neurological Models, Statistical Molecules Musical intervals Neurobiology Neurotransmitter Agents - physiology Nucleation Plant Development Poisson process Seeds - physiology Statistics, Nonparametric Stochastic Processes Synapses - physiology Synaptic transmission |
title | Nonparametric and Parametric Estimation for a Linear Germination-Growth Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20and%20Parametric%20Estimation%20for%20a%20Linear%20Germination-Growth%20Model&rft.jtitle=Biometrics&rft.au=Chiu,%20S.%20N.&rft.date=2000-09&rft.volume=56&rft.issue=3&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2000.00755.x&rft_dat=%3Cjstor_proqu%3E2676918%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221673705&rft_id=info:pmid/10985212&rft_jstor_id=2676918&rfr_iscdi=true |