Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory

We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-10, Vol.64 (4 Pt 2), p.046308-046308, Article 046308
Hauptverfasser: Chen, X, Rao, H, Spiegel, E A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046308
container_issue 4 Pt 2
container_start_page 046308
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 64
creator Chen, X
Rao, H
Spiegel, E A
description We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.
doi_str_mv 10.1103/PhysRevE.64.046308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72254265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72254265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-2bf84f017df005f487fa56b9c06a7a12300438f8bec3846e3dd4e39ce7bede6a3</originalsourceid><addsrcrecordid>eNpFkMtOwzAURC0EoqXwAyyQV-wS7PiVLFEpUAmJh2BtOc41NTRJsZNK-XsCLWJ1ZzEzmnsQOqckpZSwq6fVEF9gu0glTwmXjOQHaEpJIRKmcnU4asGKUQsxQScxfhDCMpbzYzShVBaEcjVFz_O26XzT9zWuINrgN51vG9w6HEwA56HC7ybiamhM7W1M8TLFNxD81vz6XGhr_Okb6LzF3QraMJyiI2fWEc72d4bebhev8_vk4fFuOb9-SCwjtEuy0uXcEaoqR4hwPFfOCFkWlkijDM0YIZzlLi_BjpslsKriwAoLqoQKpGEzdLnr3YT2q4fY6dpHC-u1aaDto1ZZJngmxWjMdkYb2hjHp_Qm-NqEQVOif0DqP5Bacr0DOYYu9u19WUP1H9mTY9_z3nFd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72254265</pqid></control><display><type>article</type><title>Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory</title><source>American Physical Society Journals</source><creator>Chen, X ; Rao, H ; Spiegel, E A</creator><creatorcontrib>Chen, X ; Rao, H ; Spiegel, E A</creatorcontrib><description>We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.64.046308</identifier><identifier>PMID: 11690147</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-10, Vol.64 (4 Pt 2), p.046308-046308, Article 046308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-2bf84f017df005f487fa56b9c06a7a12300438f8bec3846e3dd4e39ce7bede6a3</citedby><cites>FETCH-LOGICAL-c301t-2bf84f017df005f487fa56b9c06a7a12300438f8bec3846e3dd4e39ce7bede6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11690147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, X</creatorcontrib><creatorcontrib>Rao, H</creatorcontrib><creatorcontrib>Spiegel, E A</creatorcontrib><title>Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAURC0EoqXwAyyQV-wS7PiVLFEpUAmJh2BtOc41NTRJsZNK-XsCLWJ1ZzEzmnsQOqckpZSwq6fVEF9gu0glTwmXjOQHaEpJIRKmcnU4asGKUQsxQScxfhDCMpbzYzShVBaEcjVFz_O26XzT9zWuINrgN51vG9w6HEwA56HC7ybiamhM7W1M8TLFNxD81vz6XGhr_Okb6LzF3QraMJyiI2fWEc72d4bebhev8_vk4fFuOb9-SCwjtEuy0uXcEaoqR4hwPFfOCFkWlkijDM0YIZzlLi_BjpslsKriwAoLqoQKpGEzdLnr3YT2q4fY6dpHC-u1aaDto1ZZJngmxWjMdkYb2hjHp_Qm-NqEQVOif0DqP5Bacr0DOYYu9u19WUP1H9mTY9_z3nFd</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Chen, X</creator><creator>Rao, H</creator><creator>Spiegel, E A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011001</creationdate><title>Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory</title><author>Chen, X ; Rao, H ; Spiegel, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-2bf84f017df005f487fa56b9c06a7a12300438f8bec3846e3dd4e39ce7bede6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chen, X</creatorcontrib><creatorcontrib>Rao, H</creatorcontrib><creatorcontrib>Spiegel, E A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, X</au><au>Rao, H</au><au>Spiegel, E A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-10-01</date><risdate>2001</risdate><volume>64</volume><issue>4 Pt 2</issue><spage>046308</spage><epage>046308</epage><pages>046308-046308</pages><artnum>046308</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.</abstract><cop>United States</cop><pmid>11690147</pmid><doi>10.1103/PhysRevE.64.046308</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-10, Vol.64 (4 Pt 2), p.046308-046308, Article 046308
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_72254265
source American Physical Society Journals
title Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20description%20of%20rarefied%20gas%20dynamics.%20I.%20Derivation%20from%20kinetic%20theory&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Chen,%20X&rft.date=2001-10-01&rft.volume=64&rft.issue=4%20Pt%202&rft.spage=046308&rft.epage=046308&rft.pages=046308-046308&rft.artnum=046308&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.64.046308&rft_dat=%3Cproquest_cross%3E72254265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72254265&rft_id=info:pmid/11690147&rfr_iscdi=true