Nonconjugate Bayesian Analysis of Variance Component Models
We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjug...
Gespeichert in:
Veröffentlicht in: | Biometrics 2000-09, Vol.56 (3), p.768-774 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 3 |
container_start_page | 768 |
container_title | Biometrics |
container_volume | 56 |
creator | Wolfinger, Russell D. Kass, Robert E. |
description | We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data. |
doi_str_mv | 10.1111/j.0006-341X.2000.00768.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72252239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2676920</jstor_id><sourcerecordid>2676920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhS0EokPhHyCIWLDL4LcdoS7aUSmVpu2CtrC7shOnSsjEg52oM_8eh1QjxApvfB_fOZYPQhnBS5LOp3aJMZY54-THkqYytUrq5e4ZWhDBSY45xc_R4gAdoVcxtqktBKYv0RHBhRaU8AX6fO370vft-GAGl52ZvYuN6bPT3nT72MTM19m9CWlUumzlN1vfu37IrnzluvgavahNF92bp_sY3X05v119zdc3F5er03VeciV0zmUhy6qgVlpuKmmN5oUzRJRFpXGaK0cY5by2zCjttDKWiNpyruqaUGs5O0YfZ99t8L9GFwfYNLF0XWd658cIilJBKSsS-OEfsPVjSF-JQClR6RlNEqRnqAw-xuBq2IZmY8IeCIYpXWhhCg6m4GBKF_6kC7skfffkP9qNq_4SznEm4GQGHpvO7f_bGM4ub65SlfRvZ30bBx8OeiqVLChO63xeN3Fwu8PahJ8gFVMCvl9fpEreE7W-hSmP9zNfGw_mITQR7r5RTBjGWgqMGfsN83yoww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221713281</pqid></control><display><type>article</type><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Wolfinger, Russell D. ; Kass, Robert E.</creator><creatorcontrib>Wolfinger, Russell D. ; Kass, Robert E.</creatorcontrib><description>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2000.00768.x</identifier><identifier>PMID: 10985214</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Algorithms ; Analysis of Variance ; Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Biometrics ; Biometry - methods ; Data sampling ; Datasets ; Density estimation ; Independence chain ; Internet ; Jeffreys' prior ; Linear models ; Markov Chains ; Mixed model ; Modeling ; Models, Statistical ; Monte Carlo Method ; Posterior simulation ; Reference prior ; REML ; Statistical variance</subject><ispartof>Biometrics, 2000-09, Vol.56 (3), p.768-774</ispartof><rights>Copyright 2000 The International Biometric Society</rights><rights>Copyright International Biometric Society Sep 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</citedby><cites>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2676920$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2676920$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10985214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfinger, Russell D.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Data sampling</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Independence chain</subject><subject>Internet</subject><subject>Jeffreys' prior</subject><subject>Linear models</subject><subject>Markov Chains</subject><subject>Mixed model</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Posterior simulation</subject><subject>Reference prior</subject><subject>REML</subject><subject>Statistical variance</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkEtv1DAUhS0EokPhHyCIWLDL4LcdoS7aUSmVpu2CtrC7shOnSsjEg52oM_8eh1QjxApvfB_fOZYPQhnBS5LOp3aJMZY54-THkqYytUrq5e4ZWhDBSY45xc_R4gAdoVcxtqktBKYv0RHBhRaU8AX6fO370vft-GAGl52ZvYuN6bPT3nT72MTM19m9CWlUumzlN1vfu37IrnzluvgavahNF92bp_sY3X05v119zdc3F5er03VeciV0zmUhy6qgVlpuKmmN5oUzRJRFpXGaK0cY5by2zCjttDKWiNpyruqaUGs5O0YfZ99t8L9GFwfYNLF0XWd658cIilJBKSsS-OEfsPVjSF-JQClR6RlNEqRnqAw-xuBq2IZmY8IeCIYpXWhhCg6m4GBKF_6kC7skfffkP9qNq_4SznEm4GQGHpvO7f_bGM4ub65SlfRvZ30bBx8OeiqVLChO63xeN3Fwu8PahJ8gFVMCvl9fpEreE7W-hSmP9zNfGw_mITQR7r5RTBjGWgqMGfsN83yoww</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Wolfinger, Russell D.</creator><creator>Kass, Robert E.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200009</creationdate><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><author>Wolfinger, Russell D. ; Kass, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Data sampling</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Independence chain</topic><topic>Internet</topic><topic>Jeffreys' prior</topic><topic>Linear models</topic><topic>Markov Chains</topic><topic>Mixed model</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Posterior simulation</topic><topic>Reference prior</topic><topic>REML</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfinger, Russell D.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfinger, Russell D.</au><au>Kass, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconjugate Bayesian Analysis of Variance Component Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2000-09</date><risdate>2000</risdate><volume>56</volume><issue>3</issue><spage>768</spage><epage>774</epage><pages>768-774</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>10985214</pmid><doi>10.1111/j.0006-341X.2000.00768.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2000-09, Vol.56 (3), p.768-774 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_72252239 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics |
subjects | Algorithms Analysis of Variance Bayes Theorem Bayesian analysis Bayesian inference Biometrics Biometry - methods Data sampling Datasets Density estimation Independence chain Internet Jeffreys' prior Linear models Markov Chains Mixed model Modeling Models, Statistical Monte Carlo Method Posterior simulation Reference prior REML Statistical variance |
title | Nonconjugate Bayesian Analysis of Variance Component Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconjugate%20Bayesian%20Analysis%20of%20Variance%20Component%20Models&rft.jtitle=Biometrics&rft.au=Wolfinger,%20Russell%20D.&rft.date=2000-09&rft.volume=56&rft.issue=3&rft.spage=768&rft.epage=774&rft.pages=768-774&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2000.00768.x&rft_dat=%3Cjstor_proqu%3E2676920%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221713281&rft_id=info:pmid/10985214&rft_jstor_id=2676920&rfr_iscdi=true |