Nonconjugate Bayesian Analysis of Variance Component Models

We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2000-09, Vol.56 (3), p.768-774
Hauptverfasser: Wolfinger, Russell D., Kass, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 3
container_start_page 768
container_title Biometrics
container_volume 56
creator Wolfinger, Russell D.
Kass, Robert E.
description We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.
doi_str_mv 10.1111/j.0006-341X.2000.00768.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72252239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2676920</jstor_id><sourcerecordid>2676920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhS0EokPhHyCIWLDL4LcdoS7aUSmVpu2CtrC7shOnSsjEg52oM_8eh1QjxApvfB_fOZYPQhnBS5LOp3aJMZY54-THkqYytUrq5e4ZWhDBSY45xc_R4gAdoVcxtqktBKYv0RHBhRaU8AX6fO370vft-GAGl52ZvYuN6bPT3nT72MTM19m9CWlUumzlN1vfu37IrnzluvgavahNF92bp_sY3X05v119zdc3F5er03VeciV0zmUhy6qgVlpuKmmN5oUzRJRFpXGaK0cY5by2zCjttDKWiNpyruqaUGs5O0YfZ99t8L9GFwfYNLF0XWd658cIilJBKSsS-OEfsPVjSF-JQClR6RlNEqRnqAw-xuBq2IZmY8IeCIYpXWhhCg6m4GBKF_6kC7skfffkP9qNq_4SznEm4GQGHpvO7f_bGM4ub65SlfRvZ30bBx8OeiqVLChO63xeN3Fwu8PahJ8gFVMCvl9fpEreE7W-hSmP9zNfGw_mITQR7r5RTBjGWgqMGfsN83yoww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221713281</pqid></control><display><type>article</type><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Wolfinger, Russell D. ; Kass, Robert E.</creator><creatorcontrib>Wolfinger, Russell D. ; Kass, Robert E.</creatorcontrib><description>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2000.00768.x</identifier><identifier>PMID: 10985214</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Algorithms ; Analysis of Variance ; Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Biometrics ; Biometry - methods ; Data sampling ; Datasets ; Density estimation ; Independence chain ; Internet ; Jeffreys' prior ; Linear models ; Markov Chains ; Mixed model ; Modeling ; Models, Statistical ; Monte Carlo Method ; Posterior simulation ; Reference prior ; REML ; Statistical variance</subject><ispartof>Biometrics, 2000-09, Vol.56 (3), p.768-774</ispartof><rights>Copyright 2000 The International Biometric Society</rights><rights>Copyright International Biometric Society Sep 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</citedby><cites>FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2676920$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2676920$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10985214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfinger, Russell D.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Data sampling</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Independence chain</subject><subject>Internet</subject><subject>Jeffreys' prior</subject><subject>Linear models</subject><subject>Markov Chains</subject><subject>Mixed model</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Posterior simulation</subject><subject>Reference prior</subject><subject>REML</subject><subject>Statistical variance</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkEtv1DAUhS0EokPhHyCIWLDL4LcdoS7aUSmVpu2CtrC7shOnSsjEg52oM_8eh1QjxApvfB_fOZYPQhnBS5LOp3aJMZY54-THkqYytUrq5e4ZWhDBSY45xc_R4gAdoVcxtqktBKYv0RHBhRaU8AX6fO370vft-GAGl52ZvYuN6bPT3nT72MTM19m9CWlUumzlN1vfu37IrnzluvgavahNF92bp_sY3X05v119zdc3F5er03VeciV0zmUhy6qgVlpuKmmN5oUzRJRFpXGaK0cY5by2zCjttDKWiNpyruqaUGs5O0YfZ99t8L9GFwfYNLF0XWd658cIilJBKSsS-OEfsPVjSF-JQClR6RlNEqRnqAw-xuBq2IZmY8IeCIYpXWhhCg6m4GBKF_6kC7skfffkP9qNq_4SznEm4GQGHpvO7f_bGM4ub65SlfRvZ30bBx8OeiqVLChO63xeN3Fwu8PahJ8gFVMCvl9fpEreE7W-hSmP9zNfGw_mITQR7r5RTBjGWgqMGfsN83yoww</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Wolfinger, Russell D.</creator><creator>Kass, Robert E.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200009</creationdate><title>Nonconjugate Bayesian Analysis of Variance Component Models</title><author>Wolfinger, Russell D. ; Kass, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-4696cd92b6b4ad6ba849ea15c9d80d927e13244fb3a78e87ab15fb447ff12bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Data sampling</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Independence chain</topic><topic>Internet</topic><topic>Jeffreys' prior</topic><topic>Linear models</topic><topic>Markov Chains</topic><topic>Mixed model</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Posterior simulation</topic><topic>Reference prior</topic><topic>REML</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfinger, Russell D.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfinger, Russell D.</au><au>Kass, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconjugate Bayesian Analysis of Variance Component Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2000-09</date><risdate>2000</risdate><volume>56</volume><issue>3</issue><spage>768</spage><epage>774</epage><pages>768-774</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>10985214</pmid><doi>10.1111/j.0006-341X.2000.00768.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2000-09, Vol.56 (3), p.768-774
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_72252239
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics
subjects Algorithms
Analysis of Variance
Bayes Theorem
Bayesian analysis
Bayesian inference
Biometrics
Biometry - methods
Data sampling
Datasets
Density estimation
Independence chain
Internet
Jeffreys' prior
Linear models
Markov Chains
Mixed model
Modeling
Models, Statistical
Monte Carlo Method
Posterior simulation
Reference prior
REML
Statistical variance
title Nonconjugate Bayesian Analysis of Variance Component Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconjugate%20Bayesian%20Analysis%20of%20Variance%20Component%20Models&rft.jtitle=Biometrics&rft.au=Wolfinger,%20Russell%20D.&rft.date=2000-09&rft.volume=56&rft.issue=3&rft.spage=768&rft.epage=774&rft.pages=768-774&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2000.00768.x&rft_dat=%3Cjstor_proqu%3E2676920%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221713281&rft_id=info:pmid/10985214&rft_jstor_id=2676920&rfr_iscdi=true