The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins

Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2000-08, Vol.19 (37), p.4199-4209
Hauptverfasser: Wittau, N, Grosse, R, Kalkbrenner, F, Gohla, A, Schultz, G, Gudermann, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4209
container_issue 37
container_start_page 4199
container_title Oncogene
container_volume 19
creator Wittau, N
Grosse, R
Kalkbrenner, F
Gohla, A
Schultz, G
Gudermann, T
description Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209
doi_str_mv 10.1038/sj.onc.1203777
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72251982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72251982</sourcerecordid><originalsourceid>FETCH-LOGICAL-p139t-cf9a8b97ec57ea1e279f61e8a3c1480645c34b5e847eda994edb06293f5e576c3</originalsourceid><addsrcrecordid>eNo1kE1PwzAMhnMAsTG4ckQ5ISbRkY9maY5ogoE0ics4V2nqbpnStGtSof4JfjMFxuW1ZT9-bRmhG0oWlPDsMRwWjTcLygiXUp6hKVGCJIpxNkGXIRwIIVIRdoEmlKiMCMWn6Gu7B7zTTnvrcQcG2th0OA4tYIatt9HqCAHXvYu2dYCD3XntrN_hVsf9px7CSOFQa-ewgVFcP_aM9ga630LAxYBN07e_Q7HB6_vj_GFUO8fal2NC2Ry3XRPB-nCFzivtAlyf4gx9vDxvV6_J5n39tnraJC3lKiamUjorlAQjJGgKTKpqSSHT3NA0I8tUGJ4WArJUQqmVSqEsyJIpXgkQcmn4DN39-Y6Ljz2EmNc2_JyrPTR9yCVjgqqMjeDtCeyLGsq87WytuyH__yD_BtJscdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72251982</pqid></control><display><type>article</type><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</creator><creatorcontrib>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</creatorcontrib><description>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</description><identifier>ISSN: 0950-9232</identifier><identifier>DOI: 10.1038/sj.onc.1203777</identifier><identifier>PMID: 10980593</identifier><language>eng</language><publisher>England</publisher><subject>1-Methyl-3-isobutylxanthine - pharmacology ; 3T3 Cells - drug effects ; Actin Cytoskeleton - metabolism ; Actins - metabolism ; Animals ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Carcinoma, Small Cell - metabolism ; Carcinoma, Small Cell - pathology ; Cell Adhesion ; COS Cells - drug effects ; Cyclic AMP - physiology ; Enzyme Inhibitors - pharmacology ; Galanin - metabolism ; Galanin - pharmacology ; GTP-Binding Protein alpha Subunits, G12-G13 ; GTP-Binding Protein alpha Subunits, Gi-Go - physiology ; GTP-Binding Protein alpha Subunits, Gq-G11 ; GTP-Binding Proteins - physiology ; Heterotrimeric GTP-Binding Proteins - physiology ; Humans ; Indoles - pharmacology ; Inositol Phosphates - metabolism ; Intracellular Signaling Peptides and Proteins ; Isoproterenol - pharmacology ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Maleimides - pharmacology ; Mice ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - metabolism ; Neoplasm Proteins - antagonists &amp; inhibitors ; Neoplasm Proteins - physiology ; Pertussis Toxin ; Phosphatidylinositol Diacylglycerol-Lyase ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - physiology ; Protein-Serine-Threonine Kinases - physiology ; Receptor, Galanin, Type 2 ; Receptors, Galanin ; Receptors, Neuropeptide - drug effects ; Receptors, Neuropeptide - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; rho-Associated Kinases ; rhoA GTP-Binding Protein - physiology ; Transfection ; Tumor Cells, Cultured - metabolism ; Type C Phospholipases - metabolism ; Virulence Factors, Bordetella - pharmacology</subject><ispartof>Oncogene, 2000-08, Vol.19 (37), p.4199-4209</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10980593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittau, N</creatorcontrib><creatorcontrib>Grosse, R</creatorcontrib><creatorcontrib>Kalkbrenner, F</creatorcontrib><creatorcontrib>Gohla, A</creatorcontrib><creatorcontrib>Schultz, G</creatorcontrib><creatorcontrib>Gudermann, T</creatorcontrib><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><title>Oncogene</title><addtitle>Oncogene</addtitle><description>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</description><subject>1-Methyl-3-isobutylxanthine - pharmacology</subject><subject>3T3 Cells - drug effects</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Carcinoma, Small Cell - metabolism</subject><subject>Carcinoma, Small Cell - pathology</subject><subject>Cell Adhesion</subject><subject>COS Cells - drug effects</subject><subject>Cyclic AMP - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Galanin - metabolism</subject><subject>Galanin - pharmacology</subject><subject>GTP-Binding Protein alpha Subunits, G12-G13</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - physiology</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Heterotrimeric GTP-Binding Proteins - physiology</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Inositol Phosphates - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Isoproterenol - pharmacology</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Maleimides - pharmacology</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Neoplasm Proteins - antagonists &amp; inhibitors</subject><subject>Neoplasm Proteins - physiology</subject><subject>Pertussis Toxin</subject><subject>Phosphatidylinositol Diacylglycerol-Lyase</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - physiology</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Receptor, Galanin, Type 2</subject><subject>Receptors, Galanin</subject><subject>Receptors, Neuropeptide - drug effects</subject><subject>Receptors, Neuropeptide - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>rho-Associated Kinases</subject><subject>rhoA GTP-Binding Protein - physiology</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured - metabolism</subject><subject>Type C Phospholipases - metabolism</subject><subject>Virulence Factors, Bordetella - pharmacology</subject><issn>0950-9232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1PwzAMhnMAsTG4ckQ5ISbRkY9maY5ogoE0ics4V2nqbpnStGtSof4JfjMFxuW1ZT9-bRmhG0oWlPDsMRwWjTcLygiXUp6hKVGCJIpxNkGXIRwIIVIRdoEmlKiMCMWn6Gu7B7zTTnvrcQcG2th0OA4tYIatt9HqCAHXvYu2dYCD3XntrN_hVsf9px7CSOFQa-ewgVFcP_aM9ga630LAxYBN07e_Q7HB6_vj_GFUO8fal2NC2Ry3XRPB-nCFzivtAlyf4gx9vDxvV6_J5n39tnraJC3lKiamUjorlAQjJGgKTKpqSSHT3NA0I8tUGJ4WArJUQqmVSqEsyJIpXgkQcmn4DN39-Y6Ljz2EmNc2_JyrPTR9yCVjgqqMjeDtCeyLGsq87WytuyH__yD_BtJscdc</recordid><startdate>20000831</startdate><enddate>20000831</enddate><creator>Wittau, N</creator><creator>Grosse, R</creator><creator>Kalkbrenner, F</creator><creator>Gohla, A</creator><creator>Schultz, G</creator><creator>Gudermann, T</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20000831</creationdate><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><author>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p139t-cf9a8b97ec57ea1e279f61e8a3c1480645c34b5e847eda994edb06293f5e576c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>1-Methyl-3-isobutylxanthine - pharmacology</topic><topic>3T3 Cells - drug effects</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Carcinoma, Small Cell - metabolism</topic><topic>Carcinoma, Small Cell - pathology</topic><topic>Cell Adhesion</topic><topic>COS Cells - drug effects</topic><topic>Cyclic AMP - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Galanin - metabolism</topic><topic>Galanin - pharmacology</topic><topic>GTP-Binding Protein alpha Subunits, G12-G13</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - physiology</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Heterotrimeric GTP-Binding Proteins - physiology</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Inositol Phosphates - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Isoproterenol - pharmacology</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Maleimides - pharmacology</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Neoplasm Proteins - antagonists &amp; inhibitors</topic><topic>Neoplasm Proteins - physiology</topic><topic>Pertussis Toxin</topic><topic>Phosphatidylinositol Diacylglycerol-Lyase</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - physiology</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Receptor, Galanin, Type 2</topic><topic>Receptors, Galanin</topic><topic>Receptors, Neuropeptide - drug effects</topic><topic>Receptors, Neuropeptide - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>rho-Associated Kinases</topic><topic>rhoA GTP-Binding Protein - physiology</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured - metabolism</topic><topic>Type C Phospholipases - metabolism</topic><topic>Virulence Factors, Bordetella - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittau, N</creatorcontrib><creatorcontrib>Grosse, R</creatorcontrib><creatorcontrib>Kalkbrenner, F</creatorcontrib><creatorcontrib>Gohla, A</creatorcontrib><creatorcontrib>Schultz, G</creatorcontrib><creatorcontrib>Gudermann, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittau, N</au><au>Grosse, R</au><au>Kalkbrenner, F</au><au>Gohla, A</au><au>Schultz, G</au><au>Gudermann, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</atitle><jtitle>Oncogene</jtitle><addtitle>Oncogene</addtitle><date>2000-08-31</date><risdate>2000</risdate><volume>19</volume><issue>37</issue><spage>4199</spage><epage>4209</epage><pages>4199-4209</pages><issn>0950-9232</issn><abstract>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</abstract><cop>England</cop><pmid>10980593</pmid><doi>10.1038/sj.onc.1203777</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2000-08, Vol.19 (37), p.4199-4209
issn 0950-9232
language eng
recordid cdi_proquest_miscellaneous_72251982
source MEDLINE; Springer Nature - Complete Springer Journals; Nature; EZB-FREE-00999 freely available EZB journals
subjects 1-Methyl-3-isobutylxanthine - pharmacology
3T3 Cells - drug effects
Actin Cytoskeleton - metabolism
Actins - metabolism
Animals
Calcium Signaling - drug effects
Calcium Signaling - physiology
Carcinoma, Small Cell - metabolism
Carcinoma, Small Cell - pathology
Cell Adhesion
COS Cells - drug effects
Cyclic AMP - physiology
Enzyme Inhibitors - pharmacology
Galanin - metabolism
Galanin - pharmacology
GTP-Binding Protein alpha Subunits, G12-G13
GTP-Binding Protein alpha Subunits, Gi-Go - physiology
GTP-Binding Protein alpha Subunits, Gq-G11
GTP-Binding Proteins - physiology
Heterotrimeric GTP-Binding Proteins - physiology
Humans
Indoles - pharmacology
Inositol Phosphates - metabolism
Intracellular Signaling Peptides and Proteins
Isoproterenol - pharmacology
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Maleimides - pharmacology
Mice
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinases - metabolism
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - physiology
Pertussis Toxin
Phosphatidylinositol Diacylglycerol-Lyase
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - physiology
Protein-Serine-Threonine Kinases - physiology
Receptor, Galanin, Type 2
Receptors, Galanin
Receptors, Neuropeptide - drug effects
Receptors, Neuropeptide - physiology
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - physiology
rho-Associated Kinases
rhoA GTP-Binding Protein - physiology
Transfection
Tumor Cells, Cultured - metabolism
Type C Phospholipases - metabolism
Virulence Factors, Bordetella - pharmacology
title The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20galanin%20receptor%20type%202%20initiates%20multiple%20signaling%20pathways%20in%20small%20cell%20lung%20cancer%20cells%20by%20coupling%20to%20G(q),%20G(i)%20and%20G(12)%20proteins&rft.jtitle=Oncogene&rft.au=Wittau,%20N&rft.date=2000-08-31&rft.volume=19&rft.issue=37&rft.spage=4199&rft.epage=4209&rft.pages=4199-4209&rft.issn=0950-9232&rft_id=info:doi/10.1038/sj.onc.1203777&rft_dat=%3Cproquest_pubme%3E72251982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72251982&rft_id=info:pmid/10980593&rfr_iscdi=true