The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins
Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell...
Gespeichert in:
Veröffentlicht in: | Oncogene 2000-08, Vol.19 (37), p.4199-4209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4209 |
---|---|
container_issue | 37 |
container_start_page | 4199 |
container_title | Oncogene |
container_volume | 19 |
creator | Wittau, N Grosse, R Kalkbrenner, F Gohla, A Schultz, G Gudermann, T |
description | Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209 |
doi_str_mv | 10.1038/sj.onc.1203777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72251982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72251982</sourcerecordid><originalsourceid>FETCH-LOGICAL-p139t-cf9a8b97ec57ea1e279f61e8a3c1480645c34b5e847eda994edb06293f5e576c3</originalsourceid><addsrcrecordid>eNo1kE1PwzAMhnMAsTG4ckQ5ISbRkY9maY5ogoE0ics4V2nqbpnStGtSof4JfjMFxuW1ZT9-bRmhG0oWlPDsMRwWjTcLygiXUp6hKVGCJIpxNkGXIRwIIVIRdoEmlKiMCMWn6Gu7B7zTTnvrcQcG2th0OA4tYIatt9HqCAHXvYu2dYCD3XntrN_hVsf9px7CSOFQa-ewgVFcP_aM9ga630LAxYBN07e_Q7HB6_vj_GFUO8fal2NC2Ry3XRPB-nCFzivtAlyf4gx9vDxvV6_J5n39tnraJC3lKiamUjorlAQjJGgKTKpqSSHT3NA0I8tUGJ4WArJUQqmVSqEsyJIpXgkQcmn4DN39-Y6Ljz2EmNc2_JyrPTR9yCVjgqqMjeDtCeyLGsq87WytuyH__yD_BtJscdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72251982</pqid></control><display><type>article</type><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</creator><creatorcontrib>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</creatorcontrib><description>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</description><identifier>ISSN: 0950-9232</identifier><identifier>DOI: 10.1038/sj.onc.1203777</identifier><identifier>PMID: 10980593</identifier><language>eng</language><publisher>England</publisher><subject>1-Methyl-3-isobutylxanthine - pharmacology ; 3T3 Cells - drug effects ; Actin Cytoskeleton - metabolism ; Actins - metabolism ; Animals ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Carcinoma, Small Cell - metabolism ; Carcinoma, Small Cell - pathology ; Cell Adhesion ; COS Cells - drug effects ; Cyclic AMP - physiology ; Enzyme Inhibitors - pharmacology ; Galanin - metabolism ; Galanin - pharmacology ; GTP-Binding Protein alpha Subunits, G12-G13 ; GTP-Binding Protein alpha Subunits, Gi-Go - physiology ; GTP-Binding Protein alpha Subunits, Gq-G11 ; GTP-Binding Proteins - physiology ; Heterotrimeric GTP-Binding Proteins - physiology ; Humans ; Indoles - pharmacology ; Inositol Phosphates - metabolism ; Intracellular Signaling Peptides and Proteins ; Isoproterenol - pharmacology ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Maleimides - pharmacology ; Mice ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - metabolism ; Neoplasm Proteins - antagonists & inhibitors ; Neoplasm Proteins - physiology ; Pertussis Toxin ; Phosphatidylinositol Diacylglycerol-Lyase ; Protein Kinase C - antagonists & inhibitors ; Protein Kinase C - physiology ; Protein-Serine-Threonine Kinases - physiology ; Receptor, Galanin, Type 2 ; Receptors, Galanin ; Receptors, Neuropeptide - drug effects ; Receptors, Neuropeptide - physiology ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - physiology ; rho-Associated Kinases ; rhoA GTP-Binding Protein - physiology ; Transfection ; Tumor Cells, Cultured - metabolism ; Type C Phospholipases - metabolism ; Virulence Factors, Bordetella - pharmacology</subject><ispartof>Oncogene, 2000-08, Vol.19 (37), p.4199-4209</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10980593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittau, N</creatorcontrib><creatorcontrib>Grosse, R</creatorcontrib><creatorcontrib>Kalkbrenner, F</creatorcontrib><creatorcontrib>Gohla, A</creatorcontrib><creatorcontrib>Schultz, G</creatorcontrib><creatorcontrib>Gudermann, T</creatorcontrib><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><title>Oncogene</title><addtitle>Oncogene</addtitle><description>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</description><subject>1-Methyl-3-isobutylxanthine - pharmacology</subject><subject>3T3 Cells - drug effects</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Carcinoma, Small Cell - metabolism</subject><subject>Carcinoma, Small Cell - pathology</subject><subject>Cell Adhesion</subject><subject>COS Cells - drug effects</subject><subject>Cyclic AMP - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Galanin - metabolism</subject><subject>Galanin - pharmacology</subject><subject>GTP-Binding Protein alpha Subunits, G12-G13</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - physiology</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Heterotrimeric GTP-Binding Proteins - physiology</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Inositol Phosphates - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Isoproterenol - pharmacology</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Maleimides - pharmacology</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Neoplasm Proteins - antagonists & inhibitors</subject><subject>Neoplasm Proteins - physiology</subject><subject>Pertussis Toxin</subject><subject>Phosphatidylinositol Diacylglycerol-Lyase</subject><subject>Protein Kinase C - antagonists & inhibitors</subject><subject>Protein Kinase C - physiology</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Receptor, Galanin, Type 2</subject><subject>Receptors, Galanin</subject><subject>Receptors, Neuropeptide - drug effects</subject><subject>Receptors, Neuropeptide - physiology</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>rho-Associated Kinases</subject><subject>rhoA GTP-Binding Protein - physiology</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured - metabolism</subject><subject>Type C Phospholipases - metabolism</subject><subject>Virulence Factors, Bordetella - pharmacology</subject><issn>0950-9232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kE1PwzAMhnMAsTG4ckQ5ISbRkY9maY5ogoE0ics4V2nqbpnStGtSof4JfjMFxuW1ZT9-bRmhG0oWlPDsMRwWjTcLygiXUp6hKVGCJIpxNkGXIRwIIVIRdoEmlKiMCMWn6Gu7B7zTTnvrcQcG2th0OA4tYIatt9HqCAHXvYu2dYCD3XntrN_hVsf9px7CSOFQa-ewgVFcP_aM9ga630LAxYBN07e_Q7HB6_vj_GFUO8fal2NC2Ry3XRPB-nCFzivtAlyf4gx9vDxvV6_J5n39tnraJC3lKiamUjorlAQjJGgKTKpqSSHT3NA0I8tUGJ4WArJUQqmVSqEsyJIpXgkQcmn4DN39-Y6Ljz2EmNc2_JyrPTR9yCVjgqqMjeDtCeyLGsq87WytuyH__yD_BtJscdc</recordid><startdate>20000831</startdate><enddate>20000831</enddate><creator>Wittau, N</creator><creator>Grosse, R</creator><creator>Kalkbrenner, F</creator><creator>Gohla, A</creator><creator>Schultz, G</creator><creator>Gudermann, T</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20000831</creationdate><title>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</title><author>Wittau, N ; Grosse, R ; Kalkbrenner, F ; Gohla, A ; Schultz, G ; Gudermann, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p139t-cf9a8b97ec57ea1e279f61e8a3c1480645c34b5e847eda994edb06293f5e576c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>1-Methyl-3-isobutylxanthine - pharmacology</topic><topic>3T3 Cells - drug effects</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Carcinoma, Small Cell - metabolism</topic><topic>Carcinoma, Small Cell - pathology</topic><topic>Cell Adhesion</topic><topic>COS Cells - drug effects</topic><topic>Cyclic AMP - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Galanin - metabolism</topic><topic>Galanin - pharmacology</topic><topic>GTP-Binding Protein alpha Subunits, G12-G13</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - physiology</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Heterotrimeric GTP-Binding Proteins - physiology</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Inositol Phosphates - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Isoproterenol - pharmacology</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Maleimides - pharmacology</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Neoplasm Proteins - antagonists & inhibitors</topic><topic>Neoplasm Proteins - physiology</topic><topic>Pertussis Toxin</topic><topic>Phosphatidylinositol Diacylglycerol-Lyase</topic><topic>Protein Kinase C - antagonists & inhibitors</topic><topic>Protein Kinase C - physiology</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Receptor, Galanin, Type 2</topic><topic>Receptors, Galanin</topic><topic>Receptors, Neuropeptide - drug effects</topic><topic>Receptors, Neuropeptide - physiology</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>rho-Associated Kinases</topic><topic>rhoA GTP-Binding Protein - physiology</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured - metabolism</topic><topic>Type C Phospholipases - metabolism</topic><topic>Virulence Factors, Bordetella - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittau, N</creatorcontrib><creatorcontrib>Grosse, R</creatorcontrib><creatorcontrib>Kalkbrenner, F</creatorcontrib><creatorcontrib>Gohla, A</creatorcontrib><creatorcontrib>Schultz, G</creatorcontrib><creatorcontrib>Gudermann, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittau, N</au><au>Grosse, R</au><au>Kalkbrenner, F</au><au>Gohla, A</au><au>Schultz, G</au><au>Gudermann, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins</atitle><jtitle>Oncogene</jtitle><addtitle>Oncogene</addtitle><date>2000-08-31</date><risdate>2000</risdate><volume>19</volume><issue>37</issue><spage>4199</spage><epage>4209</epage><pages>4199-4209</pages><issn>0950-9232</issn><abstract>Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209</abstract><cop>England</cop><pmid>10980593</pmid><doi>10.1038/sj.onc.1203777</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2000-08, Vol.19 (37), p.4199-4209 |
issn | 0950-9232 |
language | eng |
recordid | cdi_proquest_miscellaneous_72251982 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature; EZB-FREE-00999 freely available EZB journals |
subjects | 1-Methyl-3-isobutylxanthine - pharmacology 3T3 Cells - drug effects Actin Cytoskeleton - metabolism Actins - metabolism Animals Calcium Signaling - drug effects Calcium Signaling - physiology Carcinoma, Small Cell - metabolism Carcinoma, Small Cell - pathology Cell Adhesion COS Cells - drug effects Cyclic AMP - physiology Enzyme Inhibitors - pharmacology Galanin - metabolism Galanin - pharmacology GTP-Binding Protein alpha Subunits, G12-G13 GTP-Binding Protein alpha Subunits, Gi-Go - physiology GTP-Binding Protein alpha Subunits, Gq-G11 GTP-Binding Proteins - physiology Heterotrimeric GTP-Binding Proteins - physiology Humans Indoles - pharmacology Inositol Phosphates - metabolism Intracellular Signaling Peptides and Proteins Isoproterenol - pharmacology Lung Neoplasms - metabolism Lung Neoplasms - pathology Maleimides - pharmacology Mice Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 Mitogen-Activated Protein Kinases - metabolism Neoplasm Proteins - antagonists & inhibitors Neoplasm Proteins - physiology Pertussis Toxin Phosphatidylinositol Diacylglycerol-Lyase Protein Kinase C - antagonists & inhibitors Protein Kinase C - physiology Protein-Serine-Threonine Kinases - physiology Receptor, Galanin, Type 2 Receptors, Galanin Receptors, Neuropeptide - drug effects Receptors, Neuropeptide - physiology Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - physiology rho-Associated Kinases rhoA GTP-Binding Protein - physiology Transfection Tumor Cells, Cultured - metabolism Type C Phospholipases - metabolism Virulence Factors, Bordetella - pharmacology |
title | The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20galanin%20receptor%20type%202%20initiates%20multiple%20signaling%20pathways%20in%20small%20cell%20lung%20cancer%20cells%20by%20coupling%20to%20G(q),%20G(i)%20and%20G(12)%20proteins&rft.jtitle=Oncogene&rft.au=Wittau,%20N&rft.date=2000-08-31&rft.volume=19&rft.issue=37&rft.spage=4199&rft.epage=4209&rft.pages=4199-4209&rft.issn=0950-9232&rft_id=info:doi/10.1038/sj.onc.1203777&rft_dat=%3Cproquest_pubme%3E72251982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72251982&rft_id=info:pmid/10980593&rfr_iscdi=true |