Standing excitation waves in the heart induced by strong alternating electric fields

We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104
Hauptverfasser: Gray, R A, Mornev, O A, Jalife, J, Aslanidi, O V, Pertsov, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168104/4
container_issue 16
container_start_page 168104
container_title Physical review letters
container_volume 87
creator Gray, R A
Mornev, O A
Jalife, J
Aslanidi, O V
Pertsov, A M
description We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.
doi_str_mv 10.1103/physrevlett.87.168104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72244281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72244281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmPwE0A9ceuw0_QjRzTxJU0CwThXaeqyoK4dSTrYvyfTJnHkZNl6H1t-GLtEmCJCcrNebp2lTUveT4t8ilmBII7YGCGXcY4ojtkYIMFYAuQjdubcJwAgz4pTNkLMJPAUxmzx5lVXm-4joh9tvPKm76JvtSEXmS7yS4qWpKwPTT1oqqNqGzlv-5BXrSfbBWDHtqS9NTpqDLW1O2cnjWodXRzqhL3f3y1mj_H8-eFpdjuPtciFj7mo0xwTCU1WpVI0JDlglqBWFU8VSt5URS1TJZvwhwStMkVNkmBNCRQqDCfser93bfuvgZwvV8ZpalvVUT-4MudcCF7gv0GOopBCZiGY7oPa9i74bcq1NStltyVCufNevgTvr7SZB-9lkZd774G7OhwYqhXVf9RBdPILasaCbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21489496</pqid></control><display><type>article</type><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</creator><creatorcontrib>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</creatorcontrib><description>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.87.168104</identifier><identifier>PMID: 11690250</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Bioelectric potentials ; Biological membranes ; Computer simulation ; Electrodes ; Electromagnetic Fields ; Functional electric stimulation ; Heart - physiology ; In Vitro Techniques ; Kinetics ; Laplace transforms ; Membrane Potentials - physiology ; Partial differential equations ; Rabbits ; Tissue</subject><ispartof>Physical review letters, 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</citedby><cites>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11690250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, R A</creatorcontrib><creatorcontrib>Mornev, O A</creatorcontrib><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Aslanidi, O V</creatorcontrib><creatorcontrib>Pertsov, A M</creatorcontrib><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bioelectric potentials</subject><subject>Biological membranes</subject><subject>Computer simulation</subject><subject>Electrodes</subject><subject>Electromagnetic Fields</subject><subject>Functional electric stimulation</subject><subject>Heart - physiology</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Laplace transforms</subject><subject>Membrane Potentials - physiology</subject><subject>Partial differential equations</subject><subject>Rabbits</subject><subject>Tissue</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwzAMhiMEYmPwE0A9ceuw0_QjRzTxJU0CwThXaeqyoK4dSTrYvyfTJnHkZNl6H1t-GLtEmCJCcrNebp2lTUveT4t8ilmBII7YGCGXcY4ojtkYIMFYAuQjdubcJwAgz4pTNkLMJPAUxmzx5lVXm-4joh9tvPKm76JvtSEXmS7yS4qWpKwPTT1oqqNqGzlv-5BXrSfbBWDHtqS9NTpqDLW1O2cnjWodXRzqhL3f3y1mj_H8-eFpdjuPtciFj7mo0xwTCU1WpVI0JDlglqBWFU8VSt5URS1TJZvwhwStMkVNkmBNCRQqDCfser93bfuvgZwvV8ZpalvVUT-4MudcCF7gv0GOopBCZiGY7oPa9i74bcq1NStltyVCufNevgTvr7SZB-9lkZd774G7OhwYqhXVf9RBdPILasaCbg</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Gray, R A</creator><creator>Mornev, O A</creator><creator>Jalife, J</creator><creator>Aslanidi, O V</creator><creator>Pertsov, A M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011015</creationdate><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><author>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bioelectric potentials</topic><topic>Biological membranes</topic><topic>Computer simulation</topic><topic>Electrodes</topic><topic>Electromagnetic Fields</topic><topic>Functional electric stimulation</topic><topic>Heart - physiology</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Laplace transforms</topic><topic>Membrane Potentials - physiology</topic><topic>Partial differential equations</topic><topic>Rabbits</topic><topic>Tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, R A</creatorcontrib><creatorcontrib>Mornev, O A</creatorcontrib><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Aslanidi, O V</creatorcontrib><creatorcontrib>Pertsov, A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, R A</au><au>Mornev, O A</au><au>Jalife, J</au><au>Aslanidi, O V</au><au>Pertsov, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standing excitation waves in the heart induced by strong alternating electric fields</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2001-10-15</date><risdate>2001</risdate><volume>87</volume><issue>16</issue><spage>168104</spage><epage>168104/4</epage><pages>168104-168104/4</pages><artnum>168104</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</abstract><cop>United States</cop><pmid>11690250</pmid><doi>10.1103/physrevlett.87.168104</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_72244281
source MEDLINE; American Physical Society Journals
subjects Algorithms
Animals
Bioelectric potentials
Biological membranes
Computer simulation
Electrodes
Electromagnetic Fields
Functional electric stimulation
Heart - physiology
In Vitro Techniques
Kinetics
Laplace transforms
Membrane Potentials - physiology
Partial differential equations
Rabbits
Tissue
title Standing excitation waves in the heart induced by strong alternating electric fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standing%20excitation%20waves%20in%20the%20heart%20induced%20by%20strong%20alternating%20electric%20fields&rft.jtitle=Physical%20review%20letters&rft.au=Gray,%20R%20A&rft.date=2001-10-15&rft.volume=87&rft.issue=16&rft.spage=168104&rft.epage=168104/4&rft.pages=168104-168104/4&rft.artnum=168104&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.87.168104&rft_dat=%3Cproquest_cross%3E72244281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21489496&rft_id=info:pmid/11690250&rfr_iscdi=true