Standing excitation waves in the heart induced by strong alternating electric fields
We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. Th...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168104/4 |
---|---|
container_issue | 16 |
container_start_page | 168104 |
container_title | Physical review letters |
container_volume | 87 |
creator | Gray, R A Mornev, O A Jalife, J Aslanidi, O V Pertsov, A M |
description | We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically. |
doi_str_mv | 10.1103/physrevlett.87.168104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72244281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72244281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmPwE0A9ceuw0_QjRzTxJU0CwThXaeqyoK4dSTrYvyfTJnHkZNl6H1t-GLtEmCJCcrNebp2lTUveT4t8ilmBII7YGCGXcY4ojtkYIMFYAuQjdubcJwAgz4pTNkLMJPAUxmzx5lVXm-4joh9tvPKm76JvtSEXmS7yS4qWpKwPTT1oqqNqGzlv-5BXrSfbBWDHtqS9NTpqDLW1O2cnjWodXRzqhL3f3y1mj_H8-eFpdjuPtciFj7mo0xwTCU1WpVI0JDlglqBWFU8VSt5URS1TJZvwhwStMkVNkmBNCRQqDCfser93bfuvgZwvV8ZpalvVUT-4MudcCF7gv0GOopBCZiGY7oPa9i74bcq1NStltyVCufNevgTvr7SZB-9lkZd774G7OhwYqhXVf9RBdPILasaCbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21489496</pqid></control><display><type>article</type><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</creator><creatorcontrib>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</creatorcontrib><description>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.87.168104</identifier><identifier>PMID: 11690250</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Bioelectric potentials ; Biological membranes ; Computer simulation ; Electrodes ; Electromagnetic Fields ; Functional electric stimulation ; Heart - physiology ; In Vitro Techniques ; Kinetics ; Laplace transforms ; Membrane Potentials - physiology ; Partial differential equations ; Rabbits ; Tissue</subject><ispartof>Physical review letters, 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</citedby><cites>FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11690250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, R A</creatorcontrib><creatorcontrib>Mornev, O A</creatorcontrib><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Aslanidi, O V</creatorcontrib><creatorcontrib>Pertsov, A M</creatorcontrib><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bioelectric potentials</subject><subject>Biological membranes</subject><subject>Computer simulation</subject><subject>Electrodes</subject><subject>Electromagnetic Fields</subject><subject>Functional electric stimulation</subject><subject>Heart - physiology</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Laplace transforms</subject><subject>Membrane Potentials - physiology</subject><subject>Partial differential equations</subject><subject>Rabbits</subject><subject>Tissue</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwzAMhiMEYmPwE0A9ceuw0_QjRzTxJU0CwThXaeqyoK4dSTrYvyfTJnHkZNl6H1t-GLtEmCJCcrNebp2lTUveT4t8ilmBII7YGCGXcY4ojtkYIMFYAuQjdubcJwAgz4pTNkLMJPAUxmzx5lVXm-4joh9tvPKm76JvtSEXmS7yS4qWpKwPTT1oqqNqGzlv-5BXrSfbBWDHtqS9NTpqDLW1O2cnjWodXRzqhL3f3y1mj_H8-eFpdjuPtciFj7mo0xwTCU1WpVI0JDlglqBWFU8VSt5URS1TJZvwhwStMkVNkmBNCRQqDCfser93bfuvgZwvV8ZpalvVUT-4MudcCF7gv0GOopBCZiGY7oPa9i74bcq1NStltyVCufNevgTvr7SZB-9lkZd774G7OhwYqhXVf9RBdPILasaCbg</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Gray, R A</creator><creator>Mornev, O A</creator><creator>Jalife, J</creator><creator>Aslanidi, O V</creator><creator>Pertsov, A M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011015</creationdate><title>Standing excitation waves in the heart induced by strong alternating electric fields</title><author>Gray, R A ; Mornev, O A ; Jalife, J ; Aslanidi, O V ; Pertsov, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-24d571390f6b594fe9201631cab25a192fb8d95a9f03190ca6aef331de308af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bioelectric potentials</topic><topic>Biological membranes</topic><topic>Computer simulation</topic><topic>Electrodes</topic><topic>Electromagnetic Fields</topic><topic>Functional electric stimulation</topic><topic>Heart - physiology</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Laplace transforms</topic><topic>Membrane Potentials - physiology</topic><topic>Partial differential equations</topic><topic>Rabbits</topic><topic>Tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, R A</creatorcontrib><creatorcontrib>Mornev, O A</creatorcontrib><creatorcontrib>Jalife, J</creatorcontrib><creatorcontrib>Aslanidi, O V</creatorcontrib><creatorcontrib>Pertsov, A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, R A</au><au>Mornev, O A</au><au>Jalife, J</au><au>Aslanidi, O V</au><au>Pertsov, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standing excitation waves in the heart induced by strong alternating electric fields</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2001-10-15</date><risdate>2001</risdate><volume>87</volume><issue>16</issue><spage>168104</spage><epage>168104/4</epage><pages>168104-168104/4</pages><artnum>168104</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.</abstract><cop>United States</cop><pmid>11690250</pmid><doi>10.1103/physrevlett.87.168104</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2001-10, Vol.87 (16), p.168104-168104/4, Article 168104 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_72244281 |
source | MEDLINE; American Physical Society Journals |
subjects | Algorithms Animals Bioelectric potentials Biological membranes Computer simulation Electrodes Electromagnetic Fields Functional electric stimulation Heart - physiology In Vitro Techniques Kinetics Laplace transforms Membrane Potentials - physiology Partial differential equations Rabbits Tissue |
title | Standing excitation waves in the heart induced by strong alternating electric fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standing%20excitation%20waves%20in%20the%20heart%20induced%20by%20strong%20alternating%20electric%20fields&rft.jtitle=Physical%20review%20letters&rft.au=Gray,%20R%20A&rft.date=2001-10-15&rft.volume=87&rft.issue=16&rft.spage=168104&rft.epage=168104/4&rft.pages=168104-168104/4&rft.artnum=168104&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.87.168104&rft_dat=%3Cproquest_cross%3E72244281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21489496&rft_id=info:pmid/11690250&rfr_iscdi=true |