Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia

In addition to the activation of cAMP‐dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5‐trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2000-08, Vol.12 (8), p.2805-2811
Hauptverfasser: Cadiou, Hervé, Sienaert, Ilse, Vanlingen, Sara, Parys, Jan B., Molle, Gérard, Duclohier, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2811
container_issue 8
container_start_page 2805
container_title The European journal of neuroscience
container_volume 12
creator Cadiou, Hervé
Sienaert, Ilse
Vanlingen, Sara
Parys, Jan B.
Molle, Gérard
Duclohier, Hervé
description In addition to the activation of cAMP‐dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5‐trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip‐dip method). In the presence of InsP3 (10 μm) and Ca2+ (100 nm), a current of 1.6 ± 0.1 pA (mean ± SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 ± 5 pS and a reversal potential of −29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 ± 0.4 ms and 42.0 ± 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 μm) or heparin (10 μg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nm Ca2+ (Po = 0.50 ± 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross‐reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3‐dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.
doi_str_mv 10.1046/j.1460-9568.2000.00166.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72231110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808720355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4936-dac24eb870ebd635dc04e35d6d3c4953d95c69863afd71a72eb701d0c4c632303</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoNY7Lb6FyR4IV50xpx8zoA3tdZ-UFbwg9arkM1kbNbZyZjM0t1_b9YpRbxQL5ITyPO-cHgQwkBKIFy-XpbAJSlqIauSEkJKQkDKcvMIzR4-HqMZqQUrKpA3--ggpWUGK8nFE7QPpFYgKZ2hr29N8hYPMQwujt4lHFpseuz7kPwYOgxH_EgUY_RpuA35mNEV3_LVYHtr-t51GcXWxAGHrjV2DHGLre-8eYr2WtMl9-x-HqIv708_n5wXVx_OLk6OrwrLayaLxljK3aJSxC0ayURjCXd5yIZlQLCmFlbWlWSmbRQYRd1CEWiI5VYyygg7RC-n3rzDj7VLo175ZF3Xmd6FddKKUgYA_wZpZoCzOoOv_gpCRSpFCRMioy_-QJdhHfu8r6aE0woEVxmqJsjGkFJ0rR6iX5m41UD0zqde6p02vdOmdz71L596k6PP7_vXi5VrfgtOAjPwZgLufOe2_12sTy_n-ZHjxRT3aXSbh7iJ37VUTAl9PT_T8OnjNcxv3mnFfgJgB7uG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204281547</pqid></control><display><type>article</type><title>Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cadiou, Hervé ; Sienaert, Ilse ; Vanlingen, Sara ; Parys, Jan B. ; Molle, Gérard ; Duclohier, Hervé</creator><creatorcontrib>Cadiou, Hervé ; Sienaert, Ilse ; Vanlingen, Sara ; Parys, Jan B. ; Molle, Gérard ; Duclohier, Hervé</creatorcontrib><description>In addition to the activation of cAMP‐dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5‐trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip‐dip method). In the presence of InsP3 (10 μm) and Ca2+ (100 nm), a current of 1.6 ± 0.1 pA (mean ± SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 ± 5 pS and a reversal potential of −29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 ± 0.4 ms and 42.0 ± 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 μm) or heparin (10 μg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nm Ca2+ (Po = 0.50 ± 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross‐reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3‐dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1046/j.1460-9568.2000.00166.x</identifier><identifier>PMID: 10971622</identifier><identifier>CODEN: EJONEI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>5-trisphosphate ; Animals ; Anticoagulants - pharmacology ; Barium - pharmacokinetics ; Blotting, Western ; Calcium - metabolism ; Calcium - pharmacology ; Calcium Channels - analysis ; Calcium Channels - immunology ; Calcium Channels - metabolism ; Carps - physiology ; Cerebellum - chemistry ; Cilia - chemistry ; Cilia - physiology ; fish olfactory ciliary membranes ; Heparin - pharmacology ; Indicators and Reagents - pharmacology ; inositol 1 ; Inositol 1,4,5-Trisphosphate - physiology ; Inositol 1,4,5-Trisphosphate Receptors ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Lipid Bilayers ; Mammals ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; microsomes ; Microsomes - chemistry ; Microsomes - physiology ; Myocardium - chemistry ; Olfactory Mucosa - chemistry ; Olfactory Mucosa - physiology ; Patch-Clamp Techniques ; Receptors, Cytoplasmic and Nuclear - analysis ; Receptors, Cytoplasmic and Nuclear - immunology ; Receptors, Cytoplasmic and Nuclear - metabolism ; Ruthenium Red - pharmacology ; Species Specificity ; Western blot</subject><ispartof>The European journal of neuroscience, 2000-08, Vol.12 (8), p.2805-2811</ispartof><rights>Federation of European Neuroscience Societies</rights><rights>Copyright Oxford University Press Aug 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4936-dac24eb870ebd635dc04e35d6d3c4953d95c69863afd71a72eb701d0c4c632303</citedby><cites>FETCH-LOGICAL-c4936-dac24eb870ebd635dc04e35d6d3c4953d95c69863afd71a72eb701d0c4c632303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1460-9568.2000.00166.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1460-9568.2000.00166.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10971622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cadiou, Hervé</creatorcontrib><creatorcontrib>Sienaert, Ilse</creatorcontrib><creatorcontrib>Vanlingen, Sara</creatorcontrib><creatorcontrib>Parys, Jan B.</creatorcontrib><creatorcontrib>Molle, Gérard</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><title>Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>In addition to the activation of cAMP‐dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5‐trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip‐dip method). In the presence of InsP3 (10 μm) and Ca2+ (100 nm), a current of 1.6 ± 0.1 pA (mean ± SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 ± 5 pS and a reversal potential of −29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 ± 0.4 ms and 42.0 ± 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 μm) or heparin (10 μg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nm Ca2+ (Po = 0.50 ± 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross‐reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3‐dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.</description><subject>5-trisphosphate</subject><subject>Animals</subject><subject>Anticoagulants - pharmacology</subject><subject>Barium - pharmacokinetics</subject><subject>Blotting, Western</subject><subject>Calcium - metabolism</subject><subject>Calcium - pharmacology</subject><subject>Calcium Channels - analysis</subject><subject>Calcium Channels - immunology</subject><subject>Calcium Channels - metabolism</subject><subject>Carps - physiology</subject><subject>Cerebellum - chemistry</subject><subject>Cilia - chemistry</subject><subject>Cilia - physiology</subject><subject>fish olfactory ciliary membranes</subject><subject>Heparin - pharmacology</subject><subject>Indicators and Reagents - pharmacology</subject><subject>inositol 1</subject><subject>Inositol 1,4,5-Trisphosphate - physiology</subject><subject>Inositol 1,4,5-Trisphosphate Receptors</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Lipid Bilayers</subject><subject>Mammals</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>microsomes</subject><subject>Microsomes - chemistry</subject><subject>Microsomes - physiology</subject><subject>Myocardium - chemistry</subject><subject>Olfactory Mucosa - chemistry</subject><subject>Olfactory Mucosa - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Receptors, Cytoplasmic and Nuclear - analysis</subject><subject>Receptors, Cytoplasmic and Nuclear - immunology</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Ruthenium Red - pharmacology</subject><subject>Species Specificity</subject><subject>Western blot</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rFDEUhoNY7Lb6FyR4IV50xpx8zoA3tdZ-UFbwg9arkM1kbNbZyZjM0t1_b9YpRbxQL5ITyPO-cHgQwkBKIFy-XpbAJSlqIauSEkJKQkDKcvMIzR4-HqMZqQUrKpA3--ggpWUGK8nFE7QPpFYgKZ2hr29N8hYPMQwujt4lHFpseuz7kPwYOgxH_EgUY_RpuA35mNEV3_LVYHtr-t51GcXWxAGHrjV2DHGLre-8eYr2WtMl9-x-HqIv708_n5wXVx_OLk6OrwrLayaLxljK3aJSxC0ayURjCXd5yIZlQLCmFlbWlWSmbRQYRd1CEWiI5VYyygg7RC-n3rzDj7VLo175ZF3Xmd6FddKKUgYA_wZpZoCzOoOv_gpCRSpFCRMioy_-QJdhHfu8r6aE0woEVxmqJsjGkFJ0rR6iX5m41UD0zqde6p02vdOmdz71L596k6PP7_vXi5VrfgtOAjPwZgLufOe2_12sTy_n-ZHjxRT3aXSbh7iJ37VUTAl9PT_T8OnjNcxv3mnFfgJgB7uG</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Cadiou, Hervé</creator><creator>Sienaert, Ilse</creator><creator>Vanlingen, Sara</creator><creator>Parys, Jan B.</creator><creator>Molle, Gérard</creator><creator>Duclohier, Hervé</creator><general>Blackwell Science Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200008</creationdate><title>Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia</title><author>Cadiou, Hervé ; Sienaert, Ilse ; Vanlingen, Sara ; Parys, Jan B. ; Molle, Gérard ; Duclohier, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4936-dac24eb870ebd635dc04e35d6d3c4953d95c69863afd71a72eb701d0c4c632303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>5-trisphosphate</topic><topic>Animals</topic><topic>Anticoagulants - pharmacology</topic><topic>Barium - pharmacokinetics</topic><topic>Blotting, Western</topic><topic>Calcium - metabolism</topic><topic>Calcium - pharmacology</topic><topic>Calcium Channels - analysis</topic><topic>Calcium Channels - immunology</topic><topic>Calcium Channels - metabolism</topic><topic>Carps - physiology</topic><topic>Cerebellum - chemistry</topic><topic>Cilia - chemistry</topic><topic>Cilia - physiology</topic><topic>fish olfactory ciliary membranes</topic><topic>Heparin - pharmacology</topic><topic>Indicators and Reagents - pharmacology</topic><topic>inositol 1</topic><topic>Inositol 1,4,5-Trisphosphate - physiology</topic><topic>Inositol 1,4,5-Trisphosphate Receptors</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Lipid Bilayers</topic><topic>Mammals</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>microsomes</topic><topic>Microsomes - chemistry</topic><topic>Microsomes - physiology</topic><topic>Myocardium - chemistry</topic><topic>Olfactory Mucosa - chemistry</topic><topic>Olfactory Mucosa - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Receptors, Cytoplasmic and Nuclear - analysis</topic><topic>Receptors, Cytoplasmic and Nuclear - immunology</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Ruthenium Red - pharmacology</topic><topic>Species Specificity</topic><topic>Western blot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadiou, Hervé</creatorcontrib><creatorcontrib>Sienaert, Ilse</creatorcontrib><creatorcontrib>Vanlingen, Sara</creatorcontrib><creatorcontrib>Parys, Jan B.</creatorcontrib><creatorcontrib>Molle, Gérard</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadiou, Hervé</au><au>Sienaert, Ilse</au><au>Vanlingen, Sara</au><au>Parys, Jan B.</au><au>Molle, Gérard</au><au>Duclohier, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2000-08</date><risdate>2000</risdate><volume>12</volume><issue>8</issue><spage>2805</spage><epage>2811</epage><pages>2805-2811</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><coden>EJONEI</coden><abstract>In addition to the activation of cAMP‐dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5‐trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip‐dip method). In the presence of InsP3 (10 μm) and Ca2+ (100 nm), a current of 1.6 ± 0.1 pA (mean ± SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 ± 5 pS and a reversal potential of −29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 ± 0.4 ms and 42.0 ± 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 μm) or heparin (10 μg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nm Ca2+ (Po = 0.50 ± 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross‐reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3‐dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>10971622</pmid><doi>10.1046/j.1460-9568.2000.00166.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2000-08, Vol.12 (8), p.2805-2811
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_72231110
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 5-trisphosphate
Animals
Anticoagulants - pharmacology
Barium - pharmacokinetics
Blotting, Western
Calcium - metabolism
Calcium - pharmacology
Calcium Channels - analysis
Calcium Channels - immunology
Calcium Channels - metabolism
Carps - physiology
Cerebellum - chemistry
Cilia - chemistry
Cilia - physiology
fish olfactory ciliary membranes
Heparin - pharmacology
Indicators and Reagents - pharmacology
inositol 1
Inositol 1,4,5-Trisphosphate - physiology
Inositol 1,4,5-Trisphosphate Receptors
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Lipid Bilayers
Mammals
Membrane Potentials - drug effects
Membrane Potentials - physiology
microsomes
Microsomes - chemistry
Microsomes - physiology
Myocardium - chemistry
Olfactory Mucosa - chemistry
Olfactory Mucosa - physiology
Patch-Clamp Techniques
Receptors, Cytoplasmic and Nuclear - analysis
Receptors, Cytoplasmic and Nuclear - immunology
Receptors, Cytoplasmic and Nuclear - metabolism
Ruthenium Red - pharmacology
Species Specificity
Western blot
title Basic properties of an inositol 1,4,5-trisphosphate-gated channel in carp olfactory cilia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20properties%20of%20an%20inositol%201,4,5-trisphosphate-gated%20channel%20in%20carp%20olfactory%20cilia&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Cadiou,%20Herv%C3%A9&rft.date=2000-08&rft.volume=12&rft.issue=8&rft.spage=2805&rft.epage=2811&rft.pages=2805-2811&rft.issn=0953-816X&rft.eissn=1460-9568&rft.coden=EJONEI&rft_id=info:doi/10.1046/j.1460-9568.2000.00166.x&rft_dat=%3Cproquest_cross%3E1808720355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204281547&rft_id=info:pmid/10971622&rfr_iscdi=true