Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux

To investigate the effects of inhibitors of chloride channels on lens volume and tissue architecture under isotonic conditions. Rat lenses were maintained in organ culture under isotonic conditions in the presence of various putative chloride channel inhibitors. The effect of an inhibitor on lens we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2000-09, Vol.41 (10), p.3049-3055
Hauptverfasser: Young, Miriam A, Tunstall, Mark J, Kistler, Joerg, Donaldson, Paul J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3055
container_issue 10
container_start_page 3049
container_title Investigative ophthalmology & visual science
container_volume 41
creator Young, Miriam A
Tunstall, Mark J
Kistler, Joerg
Donaldson, Paul J
description To investigate the effects of inhibitors of chloride channels on lens volume and tissue architecture under isotonic conditions. Rat lenses were maintained in organ culture under isotonic conditions in the presence of various putative chloride channel inhibitors. The effect of an inhibitor on lens wet mass and tissue morphology was determined by weighing and histologic examination, respectively. Exposure to 100 microM of either 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB) or 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) caused an increase in wet mass and severe tissue disruption in the lens equatorial region. Two distinctly different zones of tissue damage were evident: a peripheral zone of fiber cell swelling and an inner zone of extensive tissue breakdown. Extracellular space dilations caused the extensive tissue damage in the inner zone and preceded the peripheral fiber cell swellings. That the observed effects were a consequence of the inhibition of chloride channels was supported by (1) the effectiveness of NPPB at the lower dose of 10 microM, (2) the absence of any NPPB effect in chloride-free medium, and (3) an identical effect after exposure to tamoxifen, an inhibitor of the chloride channel regulator p-glycoprotein. Study results indicate that chloride channels are active in the lens under isotonic conditions. The spatial and temporal pattern of morphologic changes that was observed is consistent with a steady state efflux of chloride ions and water from peripheral fiber cells and a corresponding influx into fiber cells deeper in the lens. These observations may therefore represent the first visualization of the chloride flux postulated by others to be a component of the lens internal circulation system.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72230570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72230570</sourcerecordid><originalsourceid>FETCH-LOGICAL-h267t-c6403d70e2cb4b37dd2acc695296bdd972822b31459a84d415ff0dc0e85fdb603</originalsourceid><addsrcrecordid>eNpN0NtKw0AQBuAgitbqK8iCoFeBPebgnZbWCgXBw3XY7E6a1e2m7ibE-gA-t7FW8Wrm4pt_4N-LRkQIGos0Y_vRCBOexJhjfhQdh_CCMSWE4sPoiOA8SXHCRtHnjW3Uq3FLNKlt442GYZHOgQ3IONTWgB5kixbgwhVaNEpa8wF6a5awJU8mhA7QfKO9bE3j0GO3Xje-3d5O301owSlATYUkmhivOjuw__9mtns_iQ4qaQOc7uY4ep5NnybzeHF_eze5XsQ1TdI2VgnHTKcYqCp5yVKtqVQqyQXNk1LrPKUZpSUjXOQy45oTUVVYKwyZqHSZYDaOLn5y17556yC0xcoEBdZKB00XipRShkX6Dc92sCtXoIu1NyvpN8VvcwM43wEZhlYqL50y4c9lXJCMD-ryR9VmWffGQxFW0tohlBR933MyBBYM85x9AdVjheU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72230570</pqid></control><display><type>article</type><title>Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Young, Miriam A ; Tunstall, Mark J ; Kistler, Joerg ; Donaldson, Paul J</creator><creatorcontrib>Young, Miriam A ; Tunstall, Mark J ; Kistler, Joerg ; Donaldson, Paul J</creatorcontrib><description>To investigate the effects of inhibitors of chloride channels on lens volume and tissue architecture under isotonic conditions. Rat lenses were maintained in organ culture under isotonic conditions in the presence of various putative chloride channel inhibitors. The effect of an inhibitor on lens wet mass and tissue morphology was determined by weighing and histologic examination, respectively. Exposure to 100 microM of either 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB) or 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) caused an increase in wet mass and severe tissue disruption in the lens equatorial region. Two distinctly different zones of tissue damage were evident: a peripheral zone of fiber cell swelling and an inner zone of extensive tissue breakdown. Extracellular space dilations caused the extensive tissue damage in the inner zone and preceded the peripheral fiber cell swellings. That the observed effects were a consequence of the inhibition of chloride channels was supported by (1) the effectiveness of NPPB at the lower dose of 10 microM, (2) the absence of any NPPB effect in chloride-free medium, and (3) an identical effect after exposure to tamoxifen, an inhibitor of the chloride channel regulator p-glycoprotein. Study results indicate that chloride channels are active in the lens under isotonic conditions. The spatial and temporal pattern of morphologic changes that was observed is consistent with a steady state efflux of chloride ions and water from peripheral fiber cells and a corresponding influx into fiber cells deeper in the lens. These observations may therefore represent the first visualization of the chloride flux postulated by others to be a component of the lens internal circulation system.</description><identifier>ISSN: 0146-0404</identifier><identifier>EISSN: 1552-5783</identifier><identifier>PMID: 10967063</identifier><identifier>CODEN: IOVSDA</identifier><language>eng</language><publisher>Rockville, MD: ARVO</publisher><subject>4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid - pharmacology ; 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid - pharmacology ; Animals ; Biological and medical sciences ; Body Water - metabolism ; Chloride Channels - antagonists &amp; inhibitors ; Chlorides - metabolism ; Eye ; Lens, Crystalline - drug effects ; Lens, Crystalline - metabolism ; Lens, Crystalline - ultrastructure ; Medical sciences ; Microscopy, Confocal ; Nitrobenzoates - pharmacology ; Organ Culture Techniques ; Organ Size ; Pharmacology. Drug treatments ; Rats ; Rats, Wistar ; Tamoxifen - pharmacology</subject><ispartof>Investigative ophthalmology &amp; visual science, 2000-09, Vol.41 (10), p.3049-3055</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=845184$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10967063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Miriam A</creatorcontrib><creatorcontrib>Tunstall, Mark J</creatorcontrib><creatorcontrib>Kistler, Joerg</creatorcontrib><creatorcontrib>Donaldson, Paul J</creatorcontrib><title>Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>To investigate the effects of inhibitors of chloride channels on lens volume and tissue architecture under isotonic conditions. Rat lenses were maintained in organ culture under isotonic conditions in the presence of various putative chloride channel inhibitors. The effect of an inhibitor on lens wet mass and tissue morphology was determined by weighing and histologic examination, respectively. Exposure to 100 microM of either 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB) or 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) caused an increase in wet mass and severe tissue disruption in the lens equatorial region. Two distinctly different zones of tissue damage were evident: a peripheral zone of fiber cell swelling and an inner zone of extensive tissue breakdown. Extracellular space dilations caused the extensive tissue damage in the inner zone and preceded the peripheral fiber cell swellings. That the observed effects were a consequence of the inhibition of chloride channels was supported by (1) the effectiveness of NPPB at the lower dose of 10 microM, (2) the absence of any NPPB effect in chloride-free medium, and (3) an identical effect after exposure to tamoxifen, an inhibitor of the chloride channel regulator p-glycoprotein. Study results indicate that chloride channels are active in the lens under isotonic conditions. The spatial and temporal pattern of morphologic changes that was observed is consistent with a steady state efflux of chloride ions and water from peripheral fiber cells and a corresponding influx into fiber cells deeper in the lens. These observations may therefore represent the first visualization of the chloride flux postulated by others to be a component of the lens internal circulation system.</description><subject>4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid - pharmacology</subject><subject>4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Body Water - metabolism</subject><subject>Chloride Channels - antagonists &amp; inhibitors</subject><subject>Chlorides - metabolism</subject><subject>Eye</subject><subject>Lens, Crystalline - drug effects</subject><subject>Lens, Crystalline - metabolism</subject><subject>Lens, Crystalline - ultrastructure</subject><subject>Medical sciences</subject><subject>Microscopy, Confocal</subject><subject>Nitrobenzoates - pharmacology</subject><subject>Organ Culture Techniques</subject><subject>Organ Size</subject><subject>Pharmacology. Drug treatments</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Tamoxifen - pharmacology</subject><issn>0146-0404</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0NtKw0AQBuAgitbqK8iCoFeBPebgnZbWCgXBw3XY7E6a1e2m7ibE-gA-t7FW8Wrm4pt_4N-LRkQIGos0Y_vRCBOexJhjfhQdh_CCMSWE4sPoiOA8SXHCRtHnjW3Uq3FLNKlt442GYZHOgQ3IONTWgB5kixbgwhVaNEpa8wF6a5awJU8mhA7QfKO9bE3j0GO3Xje-3d5O301owSlATYUkmhivOjuw__9mtns_iQ4qaQOc7uY4ep5NnybzeHF_eze5XsQ1TdI2VgnHTKcYqCp5yVKtqVQqyQXNk1LrPKUZpSUjXOQy45oTUVVYKwyZqHSZYDaOLn5y17556yC0xcoEBdZKB00XipRShkX6Dc92sCtXoIu1NyvpN8VvcwM43wEZhlYqL50y4c9lXJCMD-ryR9VmWffGQxFW0tohlBR933MyBBYM85x9AdVjheU</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Young, Miriam A</creator><creator>Tunstall, Mark J</creator><creator>Kistler, Joerg</creator><creator>Donaldson, Paul J</creator><general>ARVO</general><general>Association for Research in Vision and Ophtalmology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux</title><author>Young, Miriam A ; Tunstall, Mark J ; Kistler, Joerg ; Donaldson, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h267t-c6403d70e2cb4b37dd2acc695296bdd972822b31459a84d415ff0dc0e85fdb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid - pharmacology</topic><topic>4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Body Water - metabolism</topic><topic>Chloride Channels - antagonists &amp; inhibitors</topic><topic>Chlorides - metabolism</topic><topic>Eye</topic><topic>Lens, Crystalline - drug effects</topic><topic>Lens, Crystalline - metabolism</topic><topic>Lens, Crystalline - ultrastructure</topic><topic>Medical sciences</topic><topic>Microscopy, Confocal</topic><topic>Nitrobenzoates - pharmacology</topic><topic>Organ Culture Techniques</topic><topic>Organ Size</topic><topic>Pharmacology. Drug treatments</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Tamoxifen - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Miriam A</creatorcontrib><creatorcontrib>Tunstall, Mark J</creatorcontrib><creatorcontrib>Kistler, Joerg</creatorcontrib><creatorcontrib>Donaldson, Paul J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Miriam A</au><au>Tunstall, Mark J</au><au>Kistler, Joerg</au><au>Donaldson, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>41</volume><issue>10</issue><spage>3049</spage><epage>3055</epage><pages>3049-3055</pages><issn>0146-0404</issn><eissn>1552-5783</eissn><coden>IOVSDA</coden><abstract>To investigate the effects of inhibitors of chloride channels on lens volume and tissue architecture under isotonic conditions. Rat lenses were maintained in organ culture under isotonic conditions in the presence of various putative chloride channel inhibitors. The effect of an inhibitor on lens wet mass and tissue morphology was determined by weighing and histologic examination, respectively. Exposure to 100 microM of either 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB) or 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) caused an increase in wet mass and severe tissue disruption in the lens equatorial region. Two distinctly different zones of tissue damage were evident: a peripheral zone of fiber cell swelling and an inner zone of extensive tissue breakdown. Extracellular space dilations caused the extensive tissue damage in the inner zone and preceded the peripheral fiber cell swellings. That the observed effects were a consequence of the inhibition of chloride channels was supported by (1) the effectiveness of NPPB at the lower dose of 10 microM, (2) the absence of any NPPB effect in chloride-free medium, and (3) an identical effect after exposure to tamoxifen, an inhibitor of the chloride channel regulator p-glycoprotein. Study results indicate that chloride channels are active in the lens under isotonic conditions. The spatial and temporal pattern of morphologic changes that was observed is consistent with a steady state efflux of chloride ions and water from peripheral fiber cells and a corresponding influx into fiber cells deeper in the lens. These observations may therefore represent the first visualization of the chloride flux postulated by others to be a component of the lens internal circulation system.</abstract><cop>Rockville, MD</cop><pub>ARVO</pub><pmid>10967063</pmid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-0404
ispartof Investigative ophthalmology & visual science, 2000-09, Vol.41 (10), p.3049-3055
issn 0146-0404
1552-5783
language eng
recordid cdi_proquest_miscellaneous_72230570
source MEDLINE; EZB Electronic Journals Library
subjects 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid - pharmacology
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid - pharmacology
Animals
Biological and medical sciences
Body Water - metabolism
Chloride Channels - antagonists & inhibitors
Chlorides - metabolism
Eye
Lens, Crystalline - drug effects
Lens, Crystalline - metabolism
Lens, Crystalline - ultrastructure
Medical sciences
Microscopy, Confocal
Nitrobenzoates - pharmacology
Organ Culture Techniques
Organ Size
Pharmacology. Drug treatments
Rats
Rats, Wistar
Tamoxifen - pharmacology
title Blocking Chloride Channels in the Rat Lens: Localized Changes in Tissue Hydration Support the Existence of a Circulating Chloride Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocking%20Chloride%20Channels%20in%20the%20Rat%20Lens:%20Localized%20Changes%20in%20Tissue%20Hydration%20Support%20the%20Existence%20of%20a%20Circulating%20Chloride%20Flux&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Young,%20Miriam%20A&rft.date=2000-09-01&rft.volume=41&rft.issue=10&rft.spage=3049&rft.epage=3055&rft.pages=3049-3055&rft.issn=0146-0404&rft.eissn=1552-5783&rft.coden=IOVSDA&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E72230570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72230570&rft_id=info:pmid/10967063&rfr_iscdi=true