Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]

Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2001-10, Vol.42 (10), p.1119-1129
Hauptverfasser: Ohshima, Y. (Nagoya Univ. (Japan)), Iwasaki, I, Suga, S, Murakami, M, Inoue, K, Maeshima, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 10
container_start_page 1119
container_title Plant and cell physiology
container_volume 42
creator Ohshima, Y. (Nagoya Univ. (Japan))
Iwasaki, I
Suga, S
Murakami, M
Inoue, K
Maeshima, M
description Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 micro g mg sup(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of Graptopetalum. The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.
doi_str_mv 10.1093/pcp/pce141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72224279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72224279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-42a56e5641c7ef780f87d34007524534195261001c220041b0510bb742689b273</originalsourceid><addsrcrecordid>eNpd0d2L1DAQAPAiireevviuBB98EKqTpG1a345F75QV5fxAFAnTbnqbu7bJ5ePW_bf8C83aRUFISEh-GTIzWfaQwnMKDX9hO5umogW9lS1oIWjeQMlvZwsAznIQNT3K7nl_CZD2HO5mR5RWglesXmS_VmZL8DqiNU5PpDNTUFMgOK3JkG6MH03QHdliUI5Y5UaFrR502BHTk7BRxA7oR_zz4Aa7aAZ0ZFRj63BSfo-QLE_e7VkKe-rQBmNVwCGOxKLDi4g7NXn1kizNmA60NxPZ6rAhDtfab8j3c7QbnKInHoO-if7H_exOj4NXDw7rcfb59atPy7N89f70zfJklXdcQMgLhmWlyqqgnVC9qKGvxZoXqQYlK0pe0KZkFQWgHWMABW2hpNC2omBV3bRM8OPs6RzXOnMdlQ9y1L5TQ8pEmeilYIwVTDQJPvkPXpropvQ3yYBWUFaCJfRsRp0z3jvVS-v0iG4nKch9G2Vqo5zbmPDjQ8TYjmr9jx76lkA-A-2D-vn3Ht2VTEKU8uzrNwlfzj8yLhq5949m36OReJHKLN9-SGmnwYFz_huQsbI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201605672</pqid></control><display><type>article</type><title>Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Freely Accessible Japanese Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ohshima, Y. (Nagoya Univ. (Japan)) ; Iwasaki, I ; Suga, S ; Murakami, M ; Inoue, K ; Maeshima, M</creator><creatorcontrib>Ohshima, Y. (Nagoya Univ. (Japan)) ; Iwasaki, I ; Suga, S ; Murakami, M ; Inoue, K ; Maeshima, M</creatorcontrib><description>Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 micro g mg sup(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of Graptopetalum. The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pce141</identifier><identifier>PMID: 11673628</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>Amino Acid Sequence ; Aquaporins - chemistry ; Aquaporins - metabolism ; Brassica - metabolism ; CAM ; CAM PATHWAY ; CELL MEMBRANES ; CELL STRUCTURE ; CRASSULACEAE ; Crassulaceae - metabolism ; Crassulacean acid metabolism ; EGTA ; ethyleneglycol bis(2-amino-ethyl)tetraacetic acid ; IMMUNOBLOTTING ; Immunohistochemistry ; Intracellular Membranes - metabolism ; Key words: Aquaporin — CAM plant — Graptopetalum paraguayense — Plasma membrane — Radish — Tonoplast ; Molecular Sequence Data ; Osmosis ; osmotic water permeability ; Permeability ; PLANT WATER RELATIONS ; plasma membrane ; Pos ; PROTEINS ; radish vacuolar membrane aquaporin of 23 kDa ; RAPHANUS SATIVUS ; Sequence Homology, Amino Acid ; Temperature ; Vacuoles - metabolism ; VM23 ; Water - metabolism</subject><ispartof>Plant and cell physiology, 2001-10, Vol.42 (10), p.1119-1129</ispartof><rights>Copyright Oxford University Press(England) Oct 15, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-42a56e5641c7ef780f87d34007524534195261001c220041b0510bb742689b273</citedby><cites>FETCH-LOGICAL-c370t-42a56e5641c7ef780f87d34007524534195261001c220041b0510bb742689b273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11673628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohshima, Y. (Nagoya Univ. (Japan))</creatorcontrib><creatorcontrib>Iwasaki, I</creatorcontrib><creatorcontrib>Suga, S</creatorcontrib><creatorcontrib>Murakami, M</creatorcontrib><creatorcontrib>Inoue, K</creatorcontrib><creatorcontrib>Maeshima, M</creatorcontrib><title>Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 micro g mg sup(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of Graptopetalum. The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.</description><subject>Amino Acid Sequence</subject><subject>Aquaporins - chemistry</subject><subject>Aquaporins - metabolism</subject><subject>Brassica - metabolism</subject><subject>CAM</subject><subject>CAM PATHWAY</subject><subject>CELL MEMBRANES</subject><subject>CELL STRUCTURE</subject><subject>CRASSULACEAE</subject><subject>Crassulaceae - metabolism</subject><subject>Crassulacean acid metabolism</subject><subject>EGTA</subject><subject>ethyleneglycol bis(2-amino-ethyl)tetraacetic acid</subject><subject>IMMUNOBLOTTING</subject><subject>Immunohistochemistry</subject><subject>Intracellular Membranes - metabolism</subject><subject>Key words: Aquaporin — CAM plant — Graptopetalum paraguayense — Plasma membrane — Radish — Tonoplast</subject><subject>Molecular Sequence Data</subject><subject>Osmosis</subject><subject>osmotic water permeability</subject><subject>Permeability</subject><subject>PLANT WATER RELATIONS</subject><subject>plasma membrane</subject><subject>Pos</subject><subject>PROTEINS</subject><subject>radish vacuolar membrane aquaporin of 23 kDa</subject><subject>RAPHANUS SATIVUS</subject><subject>Sequence Homology, Amino Acid</subject><subject>Temperature</subject><subject>Vacuoles - metabolism</subject><subject>VM23</subject><subject>Water - metabolism</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0d2L1DAQAPAiireevviuBB98EKqTpG1a345F75QV5fxAFAnTbnqbu7bJ5ePW_bf8C83aRUFISEh-GTIzWfaQwnMKDX9hO5umogW9lS1oIWjeQMlvZwsAznIQNT3K7nl_CZD2HO5mR5RWglesXmS_VmZL8DqiNU5PpDNTUFMgOK3JkG6MH03QHdliUI5Y5UaFrR502BHTk7BRxA7oR_zz4Aa7aAZ0ZFRj63BSfo-QLE_e7VkKe-rQBmNVwCGOxKLDi4g7NXn1kizNmA60NxPZ6rAhDtfab8j3c7QbnKInHoO-if7H_exOj4NXDw7rcfb59atPy7N89f70zfJklXdcQMgLhmWlyqqgnVC9qKGvxZoXqQYlK0pe0KZkFQWgHWMABW2hpNC2omBV3bRM8OPs6RzXOnMdlQ9y1L5TQ8pEmeilYIwVTDQJPvkPXpropvQ3yYBWUFaCJfRsRp0z3jvVS-v0iG4nKch9G2Vqo5zbmPDjQ8TYjmr9jx76lkA-A-2D-vn3Ht2VTEKU8uzrNwlfzj8yLhq5949m36OReJHKLN9-SGmnwYFz_huQsbI8</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Ohshima, Y. (Nagoya Univ. (Japan))</creator><creator>Iwasaki, I</creator><creator>Suga, S</creator><creator>Murakami, M</creator><creator>Inoue, K</creator><creator>Maeshima, M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20011001</creationdate><title>Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]</title><author>Ohshima, Y. (Nagoya Univ. (Japan)) ; Iwasaki, I ; Suga, S ; Murakami, M ; Inoue, K ; Maeshima, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-42a56e5641c7ef780f87d34007524534195261001c220041b0510bb742689b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Aquaporins - chemistry</topic><topic>Aquaporins - metabolism</topic><topic>Brassica - metabolism</topic><topic>CAM</topic><topic>CAM PATHWAY</topic><topic>CELL MEMBRANES</topic><topic>CELL STRUCTURE</topic><topic>CRASSULACEAE</topic><topic>Crassulaceae - metabolism</topic><topic>Crassulacean acid metabolism</topic><topic>EGTA</topic><topic>ethyleneglycol bis(2-amino-ethyl)tetraacetic acid</topic><topic>IMMUNOBLOTTING</topic><topic>Immunohistochemistry</topic><topic>Intracellular Membranes - metabolism</topic><topic>Key words: Aquaporin — CAM plant — Graptopetalum paraguayense — Plasma membrane — Radish — Tonoplast</topic><topic>Molecular Sequence Data</topic><topic>Osmosis</topic><topic>osmotic water permeability</topic><topic>Permeability</topic><topic>PLANT WATER RELATIONS</topic><topic>plasma membrane</topic><topic>Pos</topic><topic>PROTEINS</topic><topic>radish vacuolar membrane aquaporin of 23 kDa</topic><topic>RAPHANUS SATIVUS</topic><topic>Sequence Homology, Amino Acid</topic><topic>Temperature</topic><topic>Vacuoles - metabolism</topic><topic>VM23</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohshima, Y. (Nagoya Univ. (Japan))</creatorcontrib><creatorcontrib>Iwasaki, I</creatorcontrib><creatorcontrib>Suga, S</creatorcontrib><creatorcontrib>Murakami, M</creatorcontrib><creatorcontrib>Inoue, K</creatorcontrib><creatorcontrib>Maeshima, M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohshima, Y. (Nagoya Univ. (Japan))</au><au>Iwasaki, I</au><au>Suga, S</au><au>Murakami, M</au><au>Inoue, K</au><au>Maeshima, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2001-10-01</date><risdate>2001</risdate><volume>42</volume><issue>10</issue><spage>1119</spage><epage>1129</epage><pages>1119-1129</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 micro g mg sup(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of Graptopetalum. The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>11673628</pmid><doi>10.1093/pcp/pce141</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0781
ispartof Plant and cell physiology, 2001-10, Vol.42 (10), p.1119-1129
issn 0032-0781
1471-9053
language eng
recordid cdi_proquest_miscellaneous_72224279
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Freely Accessible Japanese Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Sequence
Aquaporins - chemistry
Aquaporins - metabolism
Brassica - metabolism
CAM
CAM PATHWAY
CELL MEMBRANES
CELL STRUCTURE
CRASSULACEAE
Crassulaceae - metabolism
Crassulacean acid metabolism
EGTA
ethyleneglycol bis(2-amino-ethyl)tetraacetic acid
IMMUNOBLOTTING
Immunohistochemistry
Intracellular Membranes - metabolism
Key words: Aquaporin — CAM plant — Graptopetalum paraguayense — Plasma membrane — Radish — Tonoplast
Molecular Sequence Data
Osmosis
osmotic water permeability
Permeability
PLANT WATER RELATIONS
plasma membrane
Pos
PROTEINS
radish vacuolar membrane aquaporin of 23 kDa
RAPHANUS SATIVUS
Sequence Homology, Amino Acid
Temperature
Vacuoles - metabolism
VM23
Water - metabolism
title Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: Comparison with radish [Raphanus sativus]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20aquaporin%20content%20and%20low%20osmotic%20water%20permeability%20of%20the%20plasma%20and%20vacuolar%20membranes%20of%20a%20CAM%20plant%20Graptopetalum%20paraguayense:%20Comparison%20with%20radish%20%5BRaphanus%20sativus%5D&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Ohshima,%20Y.%20(Nagoya%20Univ.%20(Japan))&rft.date=2001-10-01&rft.volume=42&rft.issue=10&rft.spage=1119&rft.epage=1129&rft.pages=1119-1129&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pce141&rft_dat=%3Cproquest_cross%3E72224279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201605672&rft_id=info:pmid/11673628&rfr_iscdi=true