Space-time mixture modelling of public health data
This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2000-09, Vol.19 (17-18), p.2333-2344 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2344 |
---|---|
container_issue | 17-18 |
container_start_page | 2333 |
container_title | Statistics in medicine |
container_volume | 19 |
creator | Böhning, Dankmar Dietz, Ekkehart Schlattmann, Peter |
description | This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/1097-0258(20000915/30)19:17/18<2333::AID-SIM573>3.0.CO;2-Q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72208817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72208817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</originalsourceid><addsrcrecordid>eNqdkN9v0zAQxy0EYt3gX0B5QvDg9s6O46QgpK3QUmlQVeOHhIROjuOwjGTp4kRs_z2uUiYeeMIvJ52__tz5w9gZwhQBxAwh0xyESl8ICCdDNZPwErM56hmmr4WUcj4_Xb_lF-sPSss3cgrTxeaV4NsHbHL_-CGbgNCaJxrVETv2_goAUQn9mB2FUAKp0hMmLnbGOt5XjYua6rYfulDbwtV1df0jastoN-R1ZaNLZ-r-MipMb56wR6WpvXt6qCfs8_Ldp8V7fr5ZrRen59zGGEtuTV7GphBF-IAs0KoUtVAgsSy0glxqWWqZaVkkKDBL4gTApc6muYljYbWTJ-z5yN117c3gfE9N5W3YzFy7dvCkhYA0QEPw2xi0Xet950radVVjujtCoL1R2kuhvRT6Y5RkuMoINWFoBqNEwSiNRkkS0GJDgrYB_uywxZA3rvgLPSoMge9j4FdVu7v_Gv3PyYdO4PORX_ne3d7zTfeTEi21oq8fV5SeqfjLarukpfwNj16e5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72208817</pqid></control><display><type>article</type><title>Space-time mixture modelling of public health data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</creator><creatorcontrib>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</creatorcontrib><description>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/1097-0258(20000915/30)19:17/18<2333::AID-SIM573>3.0.CO;2-Q</identifier><identifier>PMID: 10960857</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Female ; Germany, East - epidemiology ; Humans ; Incidence ; Lung Neoplasms - epidemiology ; Maps as Topic ; Poisson Distribution ; Registries ; Risk Factors ; Space-Time Clustering</subject><ispartof>Statistics in medicine, 2000-09, Vol.19 (17-18), p.2333-2344</ispartof><rights>Copyright © 2000 John Wiley & Sons, Ltd.</rights><rights>Copyright 2000 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0258%2820000915%2F30%2919%3A17%2F18%3C2333%3A%3AAID-SIM573%3E3.0.CO%3B2-Q$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0258%2820000915%2F30%2919%3A17%2F18%3C2333%3A%3AAID-SIM573%3E3.0.CO%3B2-Q$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10960857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Böhning, Dankmar</creatorcontrib><creatorcontrib>Dietz, Ekkehart</creatorcontrib><creatorcontrib>Schlattmann, Peter</creatorcontrib><title>Space-time mixture modelling of public health data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Female</subject><subject>Germany, East - epidemiology</subject><subject>Humans</subject><subject>Incidence</subject><subject>Lung Neoplasms - epidemiology</subject><subject>Maps as Topic</subject><subject>Poisson Distribution</subject><subject>Registries</subject><subject>Risk Factors</subject><subject>Space-Time Clustering</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqdkN9v0zAQxy0EYt3gX0B5QvDg9s6O46QgpK3QUmlQVeOHhIROjuOwjGTp4kRs_z2uUiYeeMIvJ52__tz5w9gZwhQBxAwh0xyESl8ICCdDNZPwErM56hmmr4WUcj4_Xb_lF-sPSss3cgrTxeaV4NsHbHL_-CGbgNCaJxrVETv2_goAUQn9mB2FUAKp0hMmLnbGOt5XjYua6rYfulDbwtV1df0jastoN-R1ZaNLZ-r-MipMb56wR6WpvXt6qCfs8_Ldp8V7fr5ZrRen59zGGEtuTV7GphBF-IAs0KoUtVAgsSy0glxqWWqZaVkkKDBL4gTApc6muYljYbWTJ-z5yN117c3gfE9N5W3YzFy7dvCkhYA0QEPw2xi0Xet950radVVjujtCoL1R2kuhvRT6Y5RkuMoINWFoBqNEwSiNRkkS0GJDgrYB_uywxZA3rvgLPSoMge9j4FdVu7v_Gv3PyYdO4PORX_ne3d7zTfeTEi21oq8fV5SeqfjLarukpfwNj16e5w</recordid><startdate>20000915</startdate><enddate>20000915</enddate><creator>Böhning, Dankmar</creator><creator>Dietz, Ekkehart</creator><creator>Schlattmann, Peter</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000915</creationdate><title>Space-time mixture modelling of public health data</title><author>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Female</topic><topic>Germany, East - epidemiology</topic><topic>Humans</topic><topic>Incidence</topic><topic>Lung Neoplasms - epidemiology</topic><topic>Maps as Topic</topic><topic>Poisson Distribution</topic><topic>Registries</topic><topic>Risk Factors</topic><topic>Space-Time Clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhning, Dankmar</creatorcontrib><creatorcontrib>Dietz, Ekkehart</creatorcontrib><creatorcontrib>Schlattmann, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhning, Dankmar</au><au>Dietz, Ekkehart</au><au>Schlattmann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-time mixture modelling of public health data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2000-09-15</date><risdate>2000</risdate><volume>19</volume><issue>17-18</issue><spage>2333</spage><epage>2344</epage><pages>2333-2344</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10960857</pmid><doi>10.1002/1097-0258(20000915/30)19:17/18<2333::AID-SIM573>3.0.CO;2-Q</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2000-09, Vol.19 (17-18), p.2333-2344 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_72208817 |
source | Access via Wiley Online Library; MEDLINE |
subjects | Algorithms Female Germany, East - epidemiology Humans Incidence Lung Neoplasms - epidemiology Maps as Topic Poisson Distribution Registries Risk Factors Space-Time Clustering |
title | Space-time mixture modelling of public health data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T11%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-time%20mixture%20modelling%20of%20public%20health%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=B%C3%B6hning,%20Dankmar&rft.date=2000-09-15&rft.volume=19&rft.issue=17-18&rft.spage=2333&rft.epage=2344&rft.pages=2333-2344&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/1097-0258(20000915/30)19:17/18%3C2333::AID-SIM573%3E3.0.CO;2-Q&rft_dat=%3Cproquest_cross%3E72208817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72208817&rft_id=info:pmid/10960857&rfr_iscdi=true |