Space-time mixture modelling of public health data

This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2000-09, Vol.19 (17-18), p.2333-2344
Hauptverfasser: Böhning, Dankmar, Dietz, Ekkehart, Schlattmann, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2344
container_issue 17-18
container_start_page 2333
container_title Statistics in medicine
container_volume 19
creator Böhning, Dankmar
Dietz, Ekkehart
Schlattmann, Peter
description This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/1097-0258(20000915/30)19:17/18<2333::AID-SIM573>3.0.CO;2-Q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72208817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72208817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</originalsourceid><addsrcrecordid>eNqdkN9v0zAQxy0EYt3gX0B5QvDg9s6O46QgpK3QUmlQVeOHhIROjuOwjGTp4kRs_z2uUiYeeMIvJ52__tz5w9gZwhQBxAwh0xyESl8ICCdDNZPwErM56hmmr4WUcj4_Xb_lF-sPSss3cgrTxeaV4NsHbHL_-CGbgNCaJxrVETv2_goAUQn9mB2FUAKp0hMmLnbGOt5XjYua6rYfulDbwtV1df0jastoN-R1ZaNLZ-r-MipMb56wR6WpvXt6qCfs8_Ldp8V7fr5ZrRen59zGGEtuTV7GphBF-IAs0KoUtVAgsSy0glxqWWqZaVkkKDBL4gTApc6muYljYbWTJ-z5yN117c3gfE9N5W3YzFy7dvCkhYA0QEPw2xi0Xet950radVVjujtCoL1R2kuhvRT6Y5RkuMoINWFoBqNEwSiNRkkS0GJDgrYB_uywxZA3rvgLPSoMge9j4FdVu7v_Gv3PyYdO4PORX_ne3d7zTfeTEi21oq8fV5SeqfjLarukpfwNj16e5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72208817</pqid></control><display><type>article</type><title>Space-time mixture modelling of public health data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><creator>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</creator><creatorcontrib>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</creatorcontrib><description>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/1097-0258(20000915/30)19:17/18&lt;2333::AID-SIM573&gt;3.0.CO;2-Q</identifier><identifier>PMID: 10960857</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Female ; Germany, East - epidemiology ; Humans ; Incidence ; Lung Neoplasms - epidemiology ; Maps as Topic ; Poisson Distribution ; Registries ; Risk Factors ; Space-Time Clustering</subject><ispartof>Statistics in medicine, 2000-09, Vol.19 (17-18), p.2333-2344</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright 2000 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0258%2820000915%2F30%2919%3A17%2F18%3C2333%3A%3AAID-SIM573%3E3.0.CO%3B2-Q$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0258%2820000915%2F30%2919%3A17%2F18%3C2333%3A%3AAID-SIM573%3E3.0.CO%3B2-Q$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10960857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Böhning, Dankmar</creatorcontrib><creatorcontrib>Dietz, Ekkehart</creatorcontrib><creatorcontrib>Schlattmann, Peter</creatorcontrib><title>Space-time mixture modelling of public health data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Female</subject><subject>Germany, East - epidemiology</subject><subject>Humans</subject><subject>Incidence</subject><subject>Lung Neoplasms - epidemiology</subject><subject>Maps as Topic</subject><subject>Poisson Distribution</subject><subject>Registries</subject><subject>Risk Factors</subject><subject>Space-Time Clustering</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqdkN9v0zAQxy0EYt3gX0B5QvDg9s6O46QgpK3QUmlQVeOHhIROjuOwjGTp4kRs_z2uUiYeeMIvJ52__tz5w9gZwhQBxAwh0xyESl8ICCdDNZPwErM56hmmr4WUcj4_Xb_lF-sPSss3cgrTxeaV4NsHbHL_-CGbgNCaJxrVETv2_goAUQn9mB2FUAKp0hMmLnbGOt5XjYua6rYfulDbwtV1df0jastoN-R1ZaNLZ-r-MipMb56wR6WpvXt6qCfs8_Ldp8V7fr5ZrRen59zGGEtuTV7GphBF-IAs0KoUtVAgsSy0glxqWWqZaVkkKDBL4gTApc6muYljYbWTJ-z5yN117c3gfE9N5W3YzFy7dvCkhYA0QEPw2xi0Xet950radVVjujtCoL1R2kuhvRT6Y5RkuMoINWFoBqNEwSiNRkkS0GJDgrYB_uywxZA3rvgLPSoMge9j4FdVu7v_Gv3PyYdO4PORX_ne3d7zTfeTEi21oq8fV5SeqfjLarukpfwNj16e5w</recordid><startdate>20000915</startdate><enddate>20000915</enddate><creator>Böhning, Dankmar</creator><creator>Dietz, Ekkehart</creator><creator>Schlattmann, Peter</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000915</creationdate><title>Space-time mixture modelling of public health data</title><author>Böhning, Dankmar ; Dietz, Ekkehart ; Schlattmann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4143-cabf4ad2d0913d1c581725031fd750b373f73973d6121964600e8ec8ba442c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Female</topic><topic>Germany, East - epidemiology</topic><topic>Humans</topic><topic>Incidence</topic><topic>Lung Neoplasms - epidemiology</topic><topic>Maps as Topic</topic><topic>Poisson Distribution</topic><topic>Registries</topic><topic>Risk Factors</topic><topic>Space-Time Clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhning, Dankmar</creatorcontrib><creatorcontrib>Dietz, Ekkehart</creatorcontrib><creatorcontrib>Schlattmann, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhning, Dankmar</au><au>Dietz, Ekkehart</au><au>Schlattmann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-time mixture modelling of public health data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2000-09-15</date><risdate>2000</risdate><volume>19</volume><issue>17-18</issue><spage>2333</spage><epage>2344</epage><pages>2333-2344</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper aims to enlarge the usual scope of disease mapping by means of dynamic mixtures (DMDM) in case a time component is involved in the data. A special mixture model is suggested which looks for space‐time components (clusters) simultaneously. The idea is illustrated using data on female lung cancer from the East German cancer registry for 1960–1989. The conventional mixed Poisson regression model is used as a third model for comparison. The models are discussed in terms of their benefits, difficulties and ease in interpretation, as well as their statistical meaning. Some ideas on evaluation of these models are also included. Copyright © 2000 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10960857</pmid><doi>10.1002/1097-0258(20000915/30)19:17/18&lt;2333::AID-SIM573&gt;3.0.CO;2-Q</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2000-09, Vol.19 (17-18), p.2333-2344
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_72208817
source Access via Wiley Online Library; MEDLINE
subjects Algorithms
Female
Germany, East - epidemiology
Humans
Incidence
Lung Neoplasms - epidemiology
Maps as Topic
Poisson Distribution
Registries
Risk Factors
Space-Time Clustering
title Space-time mixture modelling of public health data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T11%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-time%20mixture%20modelling%20of%20public%20health%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=B%C3%B6hning,%20Dankmar&rft.date=2000-09-15&rft.volume=19&rft.issue=17-18&rft.spage=2333&rft.epage=2344&rft.pages=2333-2344&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/1097-0258(20000915/30)19:17/18%3C2333::AID-SIM573%3E3.0.CO;2-Q&rft_dat=%3Cproquest_cross%3E72208817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72208817&rft_id=info:pmid/10960857&rfr_iscdi=true