Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides

: This study details a series of conditions that may be applied to ensure ‘safe’ incorporation of cysteine with minimal racemization during automated or manual solid‐phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307–4312] showed that several com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of peptide research 2002-11, Vol.60 (5), p.292-299
Hauptverfasser: Angell, Y. M., Alsina, J., Barany, G., Albericio, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 5
container_start_page 292
container_title The journal of peptide research
container_volume 60
creator Angell, Y. M.
Alsina, J.
Barany, G.
Albericio, F.
description : This study details a series of conditions that may be applied to ensure ‘safe’ incorporation of cysteine with minimal racemization during automated or manual solid‐phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307–4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N‐[(dimethylamino)‐1H‐1,2,3‐triazolo[4,5‐b]pyridin‐1‐ylmethylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HATU), N‐[1H‐benzotriazol‐1‐yl)‐(dimethylamino)methylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HBTU), and (benzotriazol‐1‐yl‐N‐oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N‐methylmorpholine (NMM) or N,N‐diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5–33%) of cysteine racemization. As demonstrated on the tripeptide model H‐Gly‐Cys‐Phe‐NH2, and on the nonapeptide dihydrooxytocin, the following methods are recommended: O‐pentafluorophenyl (O‐Pfp) ester in DMF; O‐Pfp ester/1‐hydroxybenzotriazole (HOBt) in DMF; N,N′‐diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6‐trimethylpyridine (TMP) in DMF (preactivation time 3.5–7.0 min in all of these cases); and HBTU/HOBt/TMP in CH2Cl2/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58‐residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6‐dimethylpyridine (lutidine), 2,3,5,6‐tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6‐di‐tert‐butyl‐4‐(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols.
doi_str_mv 10.1034/j.1399-3011.2002.02838.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72186340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72186340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4058-c774c8594c8dd8c923cbc3d5c4ed37b7fdd7f6ed19e62879cfe768276ea7da023</originalsourceid><addsrcrecordid>eNqNkMlOwzAURS0EYij8AsqKXYKHNLZXCFomqQIWTDvLtV_AJY1DnIr273FoBVs29pXefcfWQSghOCOY5aezjDApU4YJySjGNMNUMJEtt9D-72D7J_M0jl_30EEIM4wJo6zYRXuEMsEIkfvo-aHVpnNGV0nT-s4bX4Wk9G0SOmi-XIAk-MrZtHnXfV7V3TsEFxJfJmYVO66G1Pi606529VvSQNM5C-EQ7ZS6CnC0uQfo6erycXSTTu6vb0fnk9TkeChSw3luxFDGw1phJGVmapgdmhws41NeWsvLAiyRUFDBpSmBF4LyAjS3GlM2QCdrbvz85wJCp-YuGKgqXYNfBMUpEQXLcSyKddG0PoQWStW0bq7blSJY9U7VTPXqVK9O9U7Vj1O1jKvHmzcW0znYv8WNxFg4Wxe-XAWrf4PV6GI8pvcxR0K6JriodPlL0O2HKjjjQ_Vyd61uZE4leXlVjH0DsZyW9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72186340</pqid></control><display><type>article</type><title>Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Angell, Y. M. ; Alsina, J. ; Barany, G. ; Albericio, F.</creator><creatorcontrib>Angell, Y. M. ; Alsina, J. ; Barany, G. ; Albericio, F.</creatorcontrib><description>: This study details a series of conditions that may be applied to ensure ‘safe’ incorporation of cysteine with minimal racemization during automated or manual solid‐phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307–4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N‐[(dimethylamino)‐1H‐1,2,3‐triazolo[4,5‐b]pyridin‐1‐ylmethylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HATU), N‐[1H‐benzotriazol‐1‐yl)‐(dimethylamino)methylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HBTU), and (benzotriazol‐1‐yl‐N‐oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N‐methylmorpholine (NMM) or N,N‐diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5–33%) of cysteine racemization. As demonstrated on the tripeptide model H‐Gly‐Cys‐Phe‐NH2, and on the nonapeptide dihydrooxytocin, the following methods are recommended: O‐pentafluorophenyl (O‐Pfp) ester in DMF; O‐Pfp ester/1‐hydroxybenzotriazole (HOBt) in DMF; N,N′‐diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6‐trimethylpyridine (TMP) in DMF (preactivation time 3.5–7.0 min in all of these cases); and HBTU/HOBt/TMP in CH2Cl2/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58‐residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6‐dimethylpyridine (lutidine), 2,3,5,6‐tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6‐di‐tert‐butyl‐4‐(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols.</description><identifier>ISSN: 1397-002X</identifier><identifier>EISSN: 1399-3011</identifier><identifier>DOI: 10.1034/j.1399-3011.2002.02838.x</identifier><identifier>PMID: 12383119</identifier><language>eng</language><publisher>Oxford, UK: Munksgaard International Publishers</publisher><subject>automated solid-phase peptide synthesis ; Chromatography, High Pressure Liquid ; cysteine ; Cysteine - chemistry ; hindered bases ; oxytocin ; Peptides - chemical synthesis ; racemization</subject><ispartof>The journal of peptide research, 2002-11, Vol.60 (5), p.292-299</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4058-c774c8594c8dd8c923cbc3d5c4ed37b7fdd7f6ed19e62879cfe768276ea7da023</citedby><cites>FETCH-LOGICAL-c4058-c774c8594c8dd8c923cbc3d5c4ed37b7fdd7f6ed19e62879cfe768276ea7da023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1034%2Fj.1399-3011.2002.02838.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1034%2Fj.1399-3011.2002.02838.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12383119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angell, Y. M.</creatorcontrib><creatorcontrib>Alsina, J.</creatorcontrib><creatorcontrib>Barany, G.</creatorcontrib><creatorcontrib>Albericio, F.</creatorcontrib><title>Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides</title><title>The journal of peptide research</title><addtitle>J Pept Res</addtitle><description>: This study details a series of conditions that may be applied to ensure ‘safe’ incorporation of cysteine with minimal racemization during automated or manual solid‐phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307–4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N‐[(dimethylamino)‐1H‐1,2,3‐triazolo[4,5‐b]pyridin‐1‐ylmethylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HATU), N‐[1H‐benzotriazol‐1‐yl)‐(dimethylamino)methylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HBTU), and (benzotriazol‐1‐yl‐N‐oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N‐methylmorpholine (NMM) or N,N‐diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5–33%) of cysteine racemization. As demonstrated on the tripeptide model H‐Gly‐Cys‐Phe‐NH2, and on the nonapeptide dihydrooxytocin, the following methods are recommended: O‐pentafluorophenyl (O‐Pfp) ester in DMF; O‐Pfp ester/1‐hydroxybenzotriazole (HOBt) in DMF; N,N′‐diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6‐trimethylpyridine (TMP) in DMF (preactivation time 3.5–7.0 min in all of these cases); and HBTU/HOBt/TMP in CH2Cl2/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58‐residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6‐dimethylpyridine (lutidine), 2,3,5,6‐tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6‐di‐tert‐butyl‐4‐(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols.</description><subject>automated solid-phase peptide synthesis</subject><subject>Chromatography, High Pressure Liquid</subject><subject>cysteine</subject><subject>Cysteine - chemistry</subject><subject>hindered bases</subject><subject>oxytocin</subject><subject>Peptides - chemical synthesis</subject><subject>racemization</subject><issn>1397-002X</issn><issn>1399-3011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMlOwzAURS0EYij8AsqKXYKHNLZXCFomqQIWTDvLtV_AJY1DnIr273FoBVs29pXefcfWQSghOCOY5aezjDApU4YJySjGNMNUMJEtt9D-72D7J_M0jl_30EEIM4wJo6zYRXuEMsEIkfvo-aHVpnNGV0nT-s4bX4Wk9G0SOmi-XIAk-MrZtHnXfV7V3TsEFxJfJmYVO66G1Pi606529VvSQNM5C-EQ7ZS6CnC0uQfo6erycXSTTu6vb0fnk9TkeChSw3luxFDGw1phJGVmapgdmhws41NeWsvLAiyRUFDBpSmBF4LyAjS3GlM2QCdrbvz85wJCp-YuGKgqXYNfBMUpEQXLcSyKddG0PoQWStW0bq7blSJY9U7VTPXqVK9O9U7Vj1O1jKvHmzcW0znYv8WNxFg4Wxe-XAWrf4PV6GI8pvcxR0K6JriodPlL0O2HKjjjQ_Vyd61uZE4leXlVjH0DsZyW9Q</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Angell, Y. M.</creator><creator>Alsina, J.</creator><creator>Barany, G.</creator><creator>Albericio, F.</creator><general>Munksgaard International Publishers</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200211</creationdate><title>Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides</title><author>Angell, Y. M. ; Alsina, J. ; Barany, G. ; Albericio, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4058-c774c8594c8dd8c923cbc3d5c4ed37b7fdd7f6ed19e62879cfe768276ea7da023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>automated solid-phase peptide synthesis</topic><topic>Chromatography, High Pressure Liquid</topic><topic>cysteine</topic><topic>Cysteine - chemistry</topic><topic>hindered bases</topic><topic>oxytocin</topic><topic>Peptides - chemical synthesis</topic><topic>racemization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angell, Y. M.</creatorcontrib><creatorcontrib>Alsina, J.</creatorcontrib><creatorcontrib>Barany, G.</creatorcontrib><creatorcontrib>Albericio, F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of peptide research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angell, Y. M.</au><au>Alsina, J.</au><au>Barany, G.</au><au>Albericio, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides</atitle><jtitle>The journal of peptide research</jtitle><addtitle>J Pept Res</addtitle><date>2002-11</date><risdate>2002</risdate><volume>60</volume><issue>5</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>1397-002X</issn><eissn>1399-3011</eissn><abstract>: This study details a series of conditions that may be applied to ensure ‘safe’ incorporation of cysteine with minimal racemization during automated or manual solid‐phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307–4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N‐[(dimethylamino)‐1H‐1,2,3‐triazolo[4,5‐b]pyridin‐1‐ylmethylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HATU), N‐[1H‐benzotriazol‐1‐yl)‐(dimethylamino)methylene]‐N‐methylmethanaminium hexafluorophosphate N‐oxide (HBTU), and (benzotriazol‐1‐yl‐N‐oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N‐methylmorpholine (NMM) or N,N‐diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5–33%) of cysteine racemization. As demonstrated on the tripeptide model H‐Gly‐Cys‐Phe‐NH2, and on the nonapeptide dihydrooxytocin, the following methods are recommended: O‐pentafluorophenyl (O‐Pfp) ester in DMF; O‐Pfp ester/1‐hydroxybenzotriazole (HOBt) in DMF; N,N′‐diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6‐trimethylpyridine (TMP) in DMF (preactivation time 3.5–7.0 min in all of these cases); and HBTU/HOBt/TMP in CH2Cl2/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58‐residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6‐dimethylpyridine (lutidine), 2,3,5,6‐tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6‐di‐tert‐butyl‐4‐(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols.</abstract><cop>Oxford, UK</cop><pub>Munksgaard International Publishers</pub><pmid>12383119</pmid><doi>10.1034/j.1399-3011.2002.02838.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1397-002X
ispartof The journal of peptide research, 2002-11, Vol.60 (5), p.292-299
issn 1397-002X
1399-3011
language eng
recordid cdi_proquest_miscellaneous_72186340
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects automated solid-phase peptide synthesis
Chromatography, High Pressure Liquid
cysteine
Cysteine - chemistry
hindered bases
oxytocin
Peptides - chemical synthesis
racemization
title Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20protocols%20for%20stepwise%20solid-phase%20synthesis%20of%20cysteine-containing%20peptides&rft.jtitle=The%20journal%20of%20peptide%20research&rft.au=Angell,%20Y.%20M.&rft.date=2002-11&rft.volume=60&rft.issue=5&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=1397-002X&rft.eissn=1399-3011&rft_id=info:doi/10.1034/j.1399-3011.2002.02838.x&rft_dat=%3Cproquest_cross%3E72186340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72186340&rft_id=info:pmid/12383119&rfr_iscdi=true