Numerical simulation of respiratory flow patterns within human lung
A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207)...
Gespeichert in:
Veröffentlicht in: | Respiratory physiology & neurobiology 2002-04, Vol.130 (2), p.201-221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Respiratory physiology & neurobiology |
container_volume | 130 |
creator | Calay, R.K. Kurujareon, Jutarat Holdø, Arne Erik |
description | A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region. |
doi_str_mv | 10.1016/S0034-5687(01)00337-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72183501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034568701003371</els_id><sourcerecordid>72183501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoVqs_QdmLoofVzGZ3k55Eii8oerD3kM1ObGQfNdm19N-btgs9ehhmBr558BFyAfQOKOT3n5SyNM5ywW8o3IaG8RgOyAkILmLIYHIY6iyfxBOaihE59f6bUuDA2TEZQcJE6OgJmb73NTqrVRV5W_eV6mzbRK2JHPqldapr3ToyVbuKlqrr0DU-WtluYZto0deqiaq--TojR0ZVHs-HPCbz56f59DWefby8TR9nsU4z3sWszHMOSSEQNeOKZwkCZoYzoTEV3KSM07KkiSmSEApQ57rgpWGKs6KkbEyud2uXrv3p0Xeytl5jVakG295LnoBgGYUAZjtQu9Z7h0Yuna2VW0ugciNPbuXJjTxJQW7lyc3c5XCgL2os91ODrQBcDYDywZhxqtHW7zmWc5EHekwedhwGG78WnfTaYqOxtA51J8vW_vPKHxEcjGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72183501</pqid></control><display><type>article</type><title>Numerical simulation of respiratory flow patterns within human lung</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</creator><creatorcontrib>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</creatorcontrib><description>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</description><identifier>ISSN: 1569-9048</identifier><identifier>EISSN: 1878-1519</identifier><identifier>DOI: 10.1016/S0034-5687(01)00337-1</identifier><identifier>PMID: 12380010</identifier><language>eng</language><publisher>Amsterdarm: Elsevier B.V</publisher><subject>Air breathing ; Airway Resistance - physiology ; Airways, airflow, modeling ; Biological and medical sciences ; Computer Simulation ; Exercise - physiology ; Flow, Respiratory air ; Fundamental and applied biological sciences. Psychology ; Humans ; Lung - physiology ; Lung model, asymmetric bifurcation ; Mammals, airflow dynamics ; Models, Biological ; Numerical Analysis, Computer-Assisted ; Reproducibility of Results ; Respiration ; Respiratory Mechanics - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Rheology ; Vertebrates: respiratory system</subject><ispartof>Respiratory physiology & neurobiology, 2002-04, Vol.130 (2), p.201-221</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</citedby><cites>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0034-5687(01)00337-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13678612$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12380010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calay, R.K.</creatorcontrib><creatorcontrib>Kurujareon, Jutarat</creatorcontrib><creatorcontrib>Holdø, Arne Erik</creatorcontrib><title>Numerical simulation of respiratory flow patterns within human lung</title><title>Respiratory physiology & neurobiology</title><addtitle>Respir Physiol Neurobiol</addtitle><description>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</description><subject>Air breathing</subject><subject>Airway Resistance - physiology</subject><subject>Airways, airflow, modeling</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Exercise - physiology</subject><subject>Flow, Respiratory air</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Lung - physiology</subject><subject>Lung model, asymmetric bifurcation</subject><subject>Mammals, airflow dynamics</subject><subject>Models, Biological</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Respiratory Mechanics - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Rheology</subject><subject>Vertebrates: respiratory system</subject><issn>1569-9048</issn><issn>1878-1519</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMoVqs_QdmLoofVzGZ3k55Eii8oerD3kM1ObGQfNdm19N-btgs9ehhmBr558BFyAfQOKOT3n5SyNM5ywW8o3IaG8RgOyAkILmLIYHIY6iyfxBOaihE59f6bUuDA2TEZQcJE6OgJmb73NTqrVRV5W_eV6mzbRK2JHPqldapr3ToyVbuKlqrr0DU-WtluYZto0deqiaq--TojR0ZVHs-HPCbz56f59DWefby8TR9nsU4z3sWszHMOSSEQNeOKZwkCZoYzoTEV3KSM07KkiSmSEApQ57rgpWGKs6KkbEyud2uXrv3p0Xeytl5jVakG295LnoBgGYUAZjtQu9Z7h0Yuna2VW0ugciNPbuXJjTxJQW7lyc3c5XCgL2os91ODrQBcDYDywZhxqtHW7zmWc5EHekwedhwGG78WnfTaYqOxtA51J8vW_vPKHxEcjGw</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Calay, R.K.</creator><creator>Kurujareon, Jutarat</creator><creator>Holdø, Arne Erik</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020401</creationdate><title>Numerical simulation of respiratory flow patterns within human lung</title><author>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air breathing</topic><topic>Airway Resistance - physiology</topic><topic>Airways, airflow, modeling</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Exercise - physiology</topic><topic>Flow, Respiratory air</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Lung - physiology</topic><topic>Lung model, asymmetric bifurcation</topic><topic>Mammals, airflow dynamics</topic><topic>Models, Biological</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Respiratory Mechanics - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Rheology</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calay, R.K.</creatorcontrib><creatorcontrib>Kurujareon, Jutarat</creatorcontrib><creatorcontrib>Holdø, Arne Erik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory physiology & neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calay, R.K.</au><au>Kurujareon, Jutarat</au><au>Holdø, Arne Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of respiratory flow patterns within human lung</atitle><jtitle>Respiratory physiology & neurobiology</jtitle><addtitle>Respir Physiol Neurobiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>130</volume><issue>2</issue><spage>201</spage><epage>221</epage><pages>201-221</pages><issn>1569-9048</issn><eissn>1878-1519</eissn><abstract>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</abstract><cop>Amsterdarm</cop><pub>Elsevier B.V</pub><pmid>12380010</pmid><doi>10.1016/S0034-5687(01)00337-1</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-9048 |
ispartof | Respiratory physiology & neurobiology, 2002-04, Vol.130 (2), p.201-221 |
issn | 1569-9048 1878-1519 |
language | eng |
recordid | cdi_proquest_miscellaneous_72183501 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Air breathing Airway Resistance - physiology Airways, airflow, modeling Biological and medical sciences Computer Simulation Exercise - physiology Flow, Respiratory air Fundamental and applied biological sciences. Psychology Humans Lung - physiology Lung model, asymmetric bifurcation Mammals, airflow dynamics Models, Biological Numerical Analysis, Computer-Assisted Reproducibility of Results Respiration Respiratory Mechanics - physiology Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics Rheology Vertebrates: respiratory system |
title | Numerical simulation of respiratory flow patterns within human lung |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20respiratory%20flow%20patterns%20within%20human%20lung&rft.jtitle=Respiratory%20physiology%20&%20neurobiology&rft.au=Calay,%20R.K.&rft.date=2002-04-01&rft.volume=130&rft.issue=2&rft.spage=201&rft.epage=221&rft.pages=201-221&rft.issn=1569-9048&rft.eissn=1878-1519&rft_id=info:doi/10.1016/S0034-5687(01)00337-1&rft_dat=%3Cproquest_cross%3E72183501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72183501&rft_id=info:pmid/12380010&rft_els_id=S0034568701003371&rfr_iscdi=true |