Numerical simulation of respiratory flow patterns within human lung

A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory physiology & neurobiology 2002-04, Vol.130 (2), p.201-221
Hauptverfasser: Calay, R.K., Kurujareon, Jutarat, Holdø, Arne Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 2
container_start_page 201
container_title Respiratory physiology & neurobiology
container_volume 130
creator Calay, R.K.
Kurujareon, Jutarat
Holdø, Arne Erik
description A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.
doi_str_mv 10.1016/S0034-5687(01)00337-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72183501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034568701003371</els_id><sourcerecordid>72183501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoVqs_QdmLoofVzGZ3k55Eii8oerD3kM1ObGQfNdm19N-btgs9ehhmBr558BFyAfQOKOT3n5SyNM5ywW8o3IaG8RgOyAkILmLIYHIY6iyfxBOaihE59f6bUuDA2TEZQcJE6OgJmb73NTqrVRV5W_eV6mzbRK2JHPqldapr3ToyVbuKlqrr0DU-WtluYZto0deqiaq--TojR0ZVHs-HPCbz56f59DWefby8TR9nsU4z3sWszHMOSSEQNeOKZwkCZoYzoTEV3KSM07KkiSmSEApQ57rgpWGKs6KkbEyud2uXrv3p0Xeytl5jVakG295LnoBgGYUAZjtQu9Z7h0Yuna2VW0ugciNPbuXJjTxJQW7lyc3c5XCgL2os91ODrQBcDYDywZhxqtHW7zmWc5EHekwedhwGG78WnfTaYqOxtA51J8vW_vPKHxEcjGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72183501</pqid></control><display><type>article</type><title>Numerical simulation of respiratory flow patterns within human lung</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</creator><creatorcontrib>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</creatorcontrib><description>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</description><identifier>ISSN: 1569-9048</identifier><identifier>EISSN: 1878-1519</identifier><identifier>DOI: 10.1016/S0034-5687(01)00337-1</identifier><identifier>PMID: 12380010</identifier><language>eng</language><publisher>Amsterdarm: Elsevier B.V</publisher><subject>Air breathing ; Airway Resistance - physiology ; Airways, airflow, modeling ; Biological and medical sciences ; Computer Simulation ; Exercise - physiology ; Flow, Respiratory air ; Fundamental and applied biological sciences. Psychology ; Humans ; Lung - physiology ; Lung model, asymmetric bifurcation ; Mammals, airflow dynamics ; Models, Biological ; Numerical Analysis, Computer-Assisted ; Reproducibility of Results ; Respiration ; Respiratory Mechanics - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Rheology ; Vertebrates: respiratory system</subject><ispartof>Respiratory physiology &amp; neurobiology, 2002-04, Vol.130 (2), p.201-221</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</citedby><cites>FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0034-5687(01)00337-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13678612$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12380010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calay, R.K.</creatorcontrib><creatorcontrib>Kurujareon, Jutarat</creatorcontrib><creatorcontrib>Holdø, Arne Erik</creatorcontrib><title>Numerical simulation of respiratory flow patterns within human lung</title><title>Respiratory physiology &amp; neurobiology</title><addtitle>Respir Physiol Neurobiol</addtitle><description>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</description><subject>Air breathing</subject><subject>Airway Resistance - physiology</subject><subject>Airways, airflow, modeling</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Exercise - physiology</subject><subject>Flow, Respiratory air</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Lung - physiology</subject><subject>Lung model, asymmetric bifurcation</subject><subject>Mammals, airflow dynamics</subject><subject>Models, Biological</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Reproducibility of Results</subject><subject>Respiration</subject><subject>Respiratory Mechanics - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Rheology</subject><subject>Vertebrates: respiratory system</subject><issn>1569-9048</issn><issn>1878-1519</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMoVqs_QdmLoofVzGZ3k55Eii8oerD3kM1ObGQfNdm19N-btgs9ehhmBr558BFyAfQOKOT3n5SyNM5ywW8o3IaG8RgOyAkILmLIYHIY6iyfxBOaihE59f6bUuDA2TEZQcJE6OgJmb73NTqrVRV5W_eV6mzbRK2JHPqldapr3ToyVbuKlqrr0DU-WtluYZto0deqiaq--TojR0ZVHs-HPCbz56f59DWefby8TR9nsU4z3sWszHMOSSEQNeOKZwkCZoYzoTEV3KSM07KkiSmSEApQ57rgpWGKs6KkbEyud2uXrv3p0Xeytl5jVakG295LnoBgGYUAZjtQu9Z7h0Yuna2VW0ugciNPbuXJjTxJQW7lyc3c5XCgL2os91ODrQBcDYDywZhxqtHW7zmWc5EHekwedhwGG78WnfTaYqOxtA51J8vW_vPKHxEcjGw</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Calay, R.K.</creator><creator>Kurujareon, Jutarat</creator><creator>Holdø, Arne Erik</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020401</creationdate><title>Numerical simulation of respiratory flow patterns within human lung</title><author>Calay, R.K. ; Kurujareon, Jutarat ; Holdø, Arne Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-3d66712b8eec37a752e1e5f738ce487f4370dd02fb22fba1ec6cb7df3a73bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air breathing</topic><topic>Airway Resistance - physiology</topic><topic>Airways, airflow, modeling</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Exercise - physiology</topic><topic>Flow, Respiratory air</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Lung - physiology</topic><topic>Lung model, asymmetric bifurcation</topic><topic>Mammals, airflow dynamics</topic><topic>Models, Biological</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Reproducibility of Results</topic><topic>Respiration</topic><topic>Respiratory Mechanics - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Rheology</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calay, R.K.</creatorcontrib><creatorcontrib>Kurujareon, Jutarat</creatorcontrib><creatorcontrib>Holdø, Arne Erik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory physiology &amp; neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calay, R.K.</au><au>Kurujareon, Jutarat</au><au>Holdø, Arne Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of respiratory flow patterns within human lung</atitle><jtitle>Respiratory physiology &amp; neurobiology</jtitle><addtitle>Respir Physiol Neurobiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>130</volume><issue>2</issue><spage>201</spage><epage>221</epage><pages>201-221</pages><issn>1569-9048</issn><eissn>1878-1519</eissn><abstract>A computational fluid dynamics (CFD) modelling approach is used to study the unsteady respiratory airflow dynamics within a human lung. The three-dimensional asymmetric bifurcation model of the central airway based on the morphological data given by Horsfield et al. (J. Appl. Physiol. 67 (1971) 207) was used in the present study to simulate the oscillatory respiratory. The single bifurcation was found to be sufficient to give a number of results which both qualitatively and quantitatively agreed well with other published experimental and CFD results. Numerical simulation were made for two breathing conditions: (a) resting or normal breathing condition and (b) maximal exercise condition. The respiratory flow results for the both conditions are found strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. The secondary motions were stronger for the normal breathing condition as compared with the maximal exercise condition. The difference between the two cases is the flow separation regions found close to the carinal ridge for maximal exercise condition. For normal breathing condition no separation regions was observed in this region.</abstract><cop>Amsterdarm</cop><pub>Elsevier B.V</pub><pmid>12380010</pmid><doi>10.1016/S0034-5687(01)00337-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-9048
ispartof Respiratory physiology & neurobiology, 2002-04, Vol.130 (2), p.201-221
issn 1569-9048
1878-1519
language eng
recordid cdi_proquest_miscellaneous_72183501
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Air breathing
Airway Resistance - physiology
Airways, airflow, modeling
Biological and medical sciences
Computer Simulation
Exercise - physiology
Flow, Respiratory air
Fundamental and applied biological sciences. Psychology
Humans
Lung - physiology
Lung model, asymmetric bifurcation
Mammals, airflow dynamics
Models, Biological
Numerical Analysis, Computer-Assisted
Reproducibility of Results
Respiration
Respiratory Mechanics - physiology
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Rheology
Vertebrates: respiratory system
title Numerical simulation of respiratory flow patterns within human lung
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20respiratory%20flow%20patterns%20within%20human%20lung&rft.jtitle=Respiratory%20physiology%20&%20neurobiology&rft.au=Calay,%20R.K.&rft.date=2002-04-01&rft.volume=130&rft.issue=2&rft.spage=201&rft.epage=221&rft.pages=201-221&rft.issn=1569-9048&rft.eissn=1878-1519&rft_id=info:doi/10.1016/S0034-5687(01)00337-1&rft_dat=%3Cproquest_cross%3E72183501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72183501&rft_id=info:pmid/12380010&rft_els_id=S0034568701003371&rfr_iscdi=true