Evolutionary HMMs: a Bayesian approach to multiple alignment
Motivation: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol. , 33, 114–124). The algorithm, described in detail in Section 3, s...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2001-09, Vol.17 (9), p.803-820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 9 |
container_start_page | 803 |
container_title | Bioinformatics |
container_volume | 17 |
creator | Holmes, Ian Bruno, William J. |
description | Motivation: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol. , 33, 114–124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. Methods: We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al. , 1999, Nucleic Acids Res. , 27, 2682–2690). Results: We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al. , 1994, Nucleic Acids Res. , 22, 4673–4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. Availability: The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html). Contact: ihh@fruitfly.org |
doi_str_mv | 10.1093/bioinformatics/17.9.803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72181536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72181536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-e608aa43630682e21ced4426fd19a71bca5880c1de24b78655bac90ebf990d0c3</originalsourceid><addsrcrecordid>eNpdkFtv1DAQha0K1MvSvwAREn3L1hPfYsQLrVoWsQUhtVLFizVxHHBJ4sVOqvbfY7QrKnia0cw3R2cOIa-ALoFqdtr44McuxAEnb9MpqKVe1pTtkUPgkpYVFfpZ7plUJc_zA3KU0h2lAjjn--QAQGhKtTok7y7uQz9PPowYH4vV1VV6W2Bxho8ueRwL3GxiQPujmEIxzP3kN70rsPffx8GN0wvyvMM-ueNdXZCby4vr81W5_vLh4_n7dWkF6Kl0ktaInElGZV25CqxrOa9k14JGBY1FUdfUQusq3qhaCtGg1dQ1nda0pZYtyMlWN5v5Nbs0mcEn6_oeRxfmZFQFNYisvyCv_wPvwhzH7M2AriWXQrIMqS1kY0gpus5soh_y-wao-ZOu-TddA8pok1PMly938nMzuPbpbhdnBt7sAEwW-y7iaH164vLTFYMqc-WW82lyD3_3GH8aqZgSZnX7zXwSn9f89pqbr-w3h6yVyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198646563</pqid></control><display><type>article</type><title>Evolutionary HMMs: a Bayesian approach to multiple alignment</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Holmes, Ian ; Bruno, William J.</creator><creatorcontrib>Holmes, Ian ; Bruno, William J.</creatorcontrib><description>Motivation: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol. , 33, 114–124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. Methods: We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al. , 1999, Nucleic Acids Res. , 27, 2682–2690). Results: We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al. , 1994, Nucleic Acids Res. , 22, 4673–4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. Availability: The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html). Contact: ihh@fruitfly.org</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/17.9.803</identifier><identifier>PMID: 11590097</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Bayes Theorem ; Biological and medical sciences ; Computer Simulation ; Databases, Protein ; Evolution, Molecular ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Markov Chains ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Statistical ; Proteins - chemistry ; Sequence Alignment - methods ; Sequence Alignment - statistics & numerical data ; Sequence Analysis, DNA - statistics & numerical data ; Software</subject><ispartof>Bioinformatics, 2001-09, Vol.17 (9), p.803-820</ispartof><rights>Copyright Oxford University Press(England) Sep 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-e608aa43630682e21ced4426fd19a71bca5880c1de24b78655bac90ebf990d0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14262312$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11590097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holmes, Ian</creatorcontrib><creatorcontrib>Bruno, William J.</creatorcontrib><title>Evolutionary HMMs: a Bayesian approach to multiple alignment</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol. , 33, 114–124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. Methods: We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al. , 1999, Nucleic Acids Res. , 27, 2682–2690). Results: We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al. , 1994, Nucleic Acids Res. , 22, 4673–4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. Availability: The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html). Contact: ihh@fruitfly.org</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Databases, Protein</subject><subject>Evolution, Molecular</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Statistical</subject><subject>Proteins - chemistry</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Alignment - statistics & numerical data</subject><subject>Sequence Analysis, DNA - statistics & numerical data</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkFtv1DAQha0K1MvSvwAREn3L1hPfYsQLrVoWsQUhtVLFizVxHHBJ4sVOqvbfY7QrKnia0cw3R2cOIa-ALoFqdtr44McuxAEnb9MpqKVe1pTtkUPgkpYVFfpZ7plUJc_zA3KU0h2lAjjn--QAQGhKtTok7y7uQz9PPowYH4vV1VV6W2Bxho8ueRwL3GxiQPujmEIxzP3kN70rsPffx8GN0wvyvMM-ueNdXZCby4vr81W5_vLh4_n7dWkF6Kl0ktaInElGZV25CqxrOa9k14JGBY1FUdfUQusq3qhaCtGg1dQ1nda0pZYtyMlWN5v5Nbs0mcEn6_oeRxfmZFQFNYisvyCv_wPvwhzH7M2AriWXQrIMqS1kY0gpus5soh_y-wao-ZOu-TddA8pok1PMly938nMzuPbpbhdnBt7sAEwW-y7iaH164vLTFYMqc-WW82lyD3_3GH8aqZgSZnX7zXwSn9f89pqbr-w3h6yVyA</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Holmes, Ian</creator><creator>Bruno, William J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Evolutionary HMMs: a Bayesian approach to multiple alignment</title><author>Holmes, Ian ; Bruno, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-e608aa43630682e21ced4426fd19a71bca5880c1de24b78655bac90ebf990d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Databases, Protein</topic><topic>Evolution, Molecular</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Statistical</topic><topic>Proteins - chemistry</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Alignment - statistics & numerical data</topic><topic>Sequence Analysis, DNA - statistics & numerical data</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, Ian</creatorcontrib><creatorcontrib>Bruno, William J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, Ian</au><au>Bruno, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary HMMs: a Bayesian approach to multiple alignment</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>17</volume><issue>9</issue><spage>803</spage><epage>820</epage><pages>803-820</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol. , 33, 114–124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. Methods: We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al. , 1999, Nucleic Acids Res. , 27, 2682–2690). Results: We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al. , 1994, Nucleic Acids Res. , 22, 4673–4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. Availability: The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html). Contact: ihh@fruitfly.org</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>11590097</pmid><doi>10.1093/bioinformatics/17.9.803</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2001-09, Vol.17 (9), p.803-820 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_72181536 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Bayes Theorem Biological and medical sciences Computer Simulation Databases, Protein Evolution, Molecular Fundamental and applied biological sciences. Psychology General aspects Humans Markov Chains Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Statistical Proteins - chemistry Sequence Alignment - methods Sequence Alignment - statistics & numerical data Sequence Analysis, DNA - statistics & numerical data Software |
title | Evolutionary HMMs: a Bayesian approach to multiple alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20HMMs:%20a%20Bayesian%20approach%20to%20multiple%20alignment&rft.jtitle=Bioinformatics&rft.au=Holmes,%20Ian&rft.date=2001-09-01&rft.volume=17&rft.issue=9&rft.spage=803&rft.epage=820&rft.pages=803-820&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/17.9.803&rft_dat=%3Cproquest_cross%3E72181536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198646563&rft_id=info:pmid/11590097&rfr_iscdi=true |