Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex
The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processin...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2002-09, Vol.82 (5), p.1221-1228 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1228 |
---|---|
container_issue | 5 |
container_start_page | 1221 |
container_title | Journal of neurochemistry |
container_volume | 82 |
creator | Barbosa, José Ferreira, Lucimar T. Martins‐Silva, C. Santos, Magda S. Torres, Gonzalo E. Caron, Marc G. Gomez, Marcus V. Ferguson, Stephen S. G. Prado, Marco A. M. Prado, Vania F. |
description | The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities. |
doi_str_mv | 10.1046/j.1471-4159.2002.01068.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72142501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72142501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EokPhFZA3sJtgO_4LEotqBBRUFSTK2nIcm_GQOMH2tDO7PkKfkSfB6YzoEja2pXs-33t1AIAYVRhR_mZTYSrwkmLWVAQhUiGMuKx2j8Dib-ExWJQKWdaIkhPwLKUNQphTjp-CE0xqJgVvFuDuKmrnvPnpww84OpjXFl7b5M221xFqY_O-N-ux98HCHHVI0xizjdAH-O2ScWhs36e3UMNuH_Tgw-_bu2RD8tlfW5iynaAOXaFLRpvsxwBvfF7ftzn7WmACdaenPEZoxmHq7e45eOJ0n-yL430Kvn94f7U6X158-fhpdXaxNJRwuTQWMyOobg1ukDEC49ZK0bqaNW3HhOto09bloMi4znInDXOcNl0ra0IkY_UpeH34d4rjr61NWQ0-zdvoYMdtUoJgShjC_wSxFLipKSmgPIAmjilF69QU_aDjXmGkZm1qo2Y7arajZm3qXpvalejLY49tO9juIXj0VIBXR0Ano3tXTBifHjhWc0GlKNy7A3fje7v_7wHU58vV_Kr_AMZ5t0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18719342</pqid></control><display><type>article</type><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</creator><creatorcontrib>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</creatorcontrib><description>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2002.01068.x</identifier><identifier>PMID: 12358769</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs - physiology ; Amino Acid Substitution ; Animals ; Biological and medical sciences ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line ; Cell physiology ; cholinergic mechanisms ; Dynamin I ; Dynamins ; endocytosis ; Endocytosis - drug effects ; Endocytosis - physiology ; exocytosis ; Fundamental and applied biological sciences. Psychology ; Genes, Dominant ; Green Fluorescent Proteins ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; GTP Phosphohydrolases - pharmacology ; Luminescent Proteins - genetics ; Macromolecular Substances ; Membrane Proteins - metabolism ; Membrane Transport Proteins ; Mice ; Molecular and cellular biology ; Neurons - cytology ; Neurons - metabolism ; Protein Binding - physiology ; Protein Transport - physiology ; Rats ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Secretion. Exocytosis ; synaptic vesicle ; Transfection ; Two-Hybrid System Techniques ; Vesicular Acetylcholine Transport Proteins ; Vesicular Transport Proteins</subject><ispartof>Journal of neurochemistry, 2002-09, Vol.82 (5), p.1221-1228</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</citedby><cites>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2002.01068.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2002.01068.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15367487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12358769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, José</creatorcontrib><creatorcontrib>Ferreira, Lucimar T.</creatorcontrib><creatorcontrib>Martins‐Silva, C.</creatorcontrib><creatorcontrib>Santos, Magda S.</creatorcontrib><creatorcontrib>Torres, Gonzalo E.</creatorcontrib><creatorcontrib>Caron, Marc G.</creatorcontrib><creatorcontrib>Gomez, Marcus V.</creatorcontrib><creatorcontrib>Ferguson, Stephen S. G.</creatorcontrib><creatorcontrib>Prado, Marco A. M.</creatorcontrib><creatorcontrib>Prado, Vania F.</creatorcontrib><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</description><subject>Adaptor Proteins, Vesicular Transport</subject><subject>Amino Acid Motifs - physiology</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell physiology</subject><subject>cholinergic mechanisms</subject><subject>Dynamin I</subject><subject>Dynamins</subject><subject>endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>exocytosis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Dominant</subject><subject>Green Fluorescent Proteins</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTP Phosphohydrolases - pharmacology</subject><subject>Luminescent Proteins - genetics</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Secretion. Exocytosis</subject><subject>synaptic vesicle</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><subject>Vesicular Acetylcholine Transport Proteins</subject><subject>Vesicular Transport Proteins</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURi0EokPhFZA3sJtgO_4LEotqBBRUFSTK2nIcm_GQOMH2tDO7PkKfkSfB6YzoEja2pXs-33t1AIAYVRhR_mZTYSrwkmLWVAQhUiGMuKx2j8Dib-ExWJQKWdaIkhPwLKUNQphTjp-CE0xqJgVvFuDuKmrnvPnpww84OpjXFl7b5M221xFqY_O-N-ux98HCHHVI0xizjdAH-O2ScWhs36e3UMNuH_Tgw-_bu2RD8tlfW5iynaAOXaFLRpvsxwBvfF7ftzn7WmACdaenPEZoxmHq7e45eOJ0n-yL430Kvn94f7U6X158-fhpdXaxNJRwuTQWMyOobg1ukDEC49ZK0bqaNW3HhOto09bloMi4znInDXOcNl0ra0IkY_UpeH34d4rjr61NWQ0-zdvoYMdtUoJgShjC_wSxFLipKSmgPIAmjilF69QU_aDjXmGkZm1qo2Y7arajZm3qXpvalejLY49tO9juIXj0VIBXR0Ano3tXTBifHjhWc0GlKNy7A3fje7v_7wHU58vV_Kr_AMZ5t0s</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Barbosa, José</creator><creator>Ferreira, Lucimar T.</creator><creator>Martins‐Silva, C.</creator><creator>Santos, Magda S.</creator><creator>Torres, Gonzalo E.</creator><creator>Caron, Marc G.</creator><creator>Gomez, Marcus V.</creator><creator>Ferguson, Stephen S. G.</creator><creator>Prado, Marco A. M.</creator><creator>Prado, Vania F.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200209</creationdate><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><author>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptor Proteins, Vesicular Transport</topic><topic>Amino Acid Motifs - physiology</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell physiology</topic><topic>cholinergic mechanisms</topic><topic>Dynamin I</topic><topic>Dynamins</topic><topic>endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>exocytosis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Dominant</topic><topic>Green Fluorescent Proteins</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTP Phosphohydrolases - pharmacology</topic><topic>Luminescent Proteins - genetics</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Secretion. Exocytosis</topic><topic>synaptic vesicle</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><topic>Vesicular Acetylcholine Transport Proteins</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, José</creatorcontrib><creatorcontrib>Ferreira, Lucimar T.</creatorcontrib><creatorcontrib>Martins‐Silva, C.</creatorcontrib><creatorcontrib>Santos, Magda S.</creatorcontrib><creatorcontrib>Torres, Gonzalo E.</creatorcontrib><creatorcontrib>Caron, Marc G.</creatorcontrib><creatorcontrib>Gomez, Marcus V.</creatorcontrib><creatorcontrib>Ferguson, Stephen S. G.</creatorcontrib><creatorcontrib>Prado, Marco A. M.</creatorcontrib><creatorcontrib>Prado, Vania F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, José</au><au>Ferreira, Lucimar T.</au><au>Martins‐Silva, C.</au><au>Santos, Magda S.</au><au>Torres, Gonzalo E.</au><au>Caron, Marc G.</au><au>Gomez, Marcus V.</au><au>Ferguson, Stephen S. G.</au><au>Prado, Marco A. M.</au><au>Prado, Vania F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2002-09</date><risdate>2002</risdate><volume>82</volume><issue>5</issue><spage>1221</spage><epage>1228</epage><pages>1221-1228</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12358769</pmid><doi>10.1046/j.1471-4159.2002.01068.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2002-09, Vol.82 (5), p.1221-1228 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_72142501 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Adaptor Proteins, Vesicular Transport Amino Acid Motifs - physiology Amino Acid Substitution Animals Biological and medical sciences Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line Cell physiology cholinergic mechanisms Dynamin I Dynamins endocytosis Endocytosis - drug effects Endocytosis - physiology exocytosis Fundamental and applied biological sciences. Psychology Genes, Dominant Green Fluorescent Proteins GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism GTP Phosphohydrolases - pharmacology Luminescent Proteins - genetics Macromolecular Substances Membrane Proteins - metabolism Membrane Transport Proteins Mice Molecular and cellular biology Neurons - cytology Neurons - metabolism Protein Binding - physiology Protein Transport - physiology Rats Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Secretion. Exocytosis synaptic vesicle Transfection Two-Hybrid System Techniques Vesicular Acetylcholine Transport Proteins Vesicular Transport Proteins |
title | Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trafficking%20of%20the%20vesicular%20acetylcholine%20transporter%20in%20SN56%20cells:%20a%20dynamin%E2%80%90sensitive%20step%20and%20interaction%20with%20the%20AP%E2%80%902%20adaptor%20complex&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Barbosa,%20Jos%C3%A9&rft.date=2002-09&rft.volume=82&rft.issue=5&rft.spage=1221&rft.epage=1228&rft.pages=1221-1228&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2002.01068.x&rft_dat=%3Cproquest_cross%3E72142501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18719342&rft_id=info:pmid/12358769&rfr_iscdi=true |