Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex

The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2002-09, Vol.82 (5), p.1221-1228
Hauptverfasser: Barbosa, José, Ferreira, Lucimar T., Martins‐Silva, C., Santos, Magda S., Torres, Gonzalo E., Caron, Marc G., Gomez, Marcus V., Ferguson, Stephen S. G., Prado, Marco A. M., Prado, Vania F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1228
container_issue 5
container_start_page 1221
container_title Journal of neurochemistry
container_volume 82
creator Barbosa, José
Ferreira, Lucimar T.
Martins‐Silva, C.
Santos, Magda S.
Torres, Gonzalo E.
Caron, Marc G.
Gomez, Marcus V.
Ferguson, Stephen S. G.
Prado, Marco A. M.
Prado, Vania F.
description The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.
doi_str_mv 10.1046/j.1471-4159.2002.01068.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72142501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72142501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EokPhFZA3sJtgO_4LEotqBBRUFSTK2nIcm_GQOMH2tDO7PkKfkSfB6YzoEja2pXs-33t1AIAYVRhR_mZTYSrwkmLWVAQhUiGMuKx2j8Dib-ExWJQKWdaIkhPwLKUNQphTjp-CE0xqJgVvFuDuKmrnvPnpww84OpjXFl7b5M221xFqY_O-N-ux98HCHHVI0xizjdAH-O2ScWhs36e3UMNuH_Tgw-_bu2RD8tlfW5iynaAOXaFLRpvsxwBvfF7ftzn7WmACdaenPEZoxmHq7e45eOJ0n-yL430Kvn94f7U6X158-fhpdXaxNJRwuTQWMyOobg1ukDEC49ZK0bqaNW3HhOto09bloMi4znInDXOcNl0ra0IkY_UpeH34d4rjr61NWQ0-zdvoYMdtUoJgShjC_wSxFLipKSmgPIAmjilF69QU_aDjXmGkZm1qo2Y7arajZm3qXpvalejLY49tO9juIXj0VIBXR0Ano3tXTBifHjhWc0GlKNy7A3fje7v_7wHU58vV_Kr_AMZ5t0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18719342</pqid></control><display><type>article</type><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</creator><creatorcontrib>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</creatorcontrib><description>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2002.01068.x</identifier><identifier>PMID: 12358769</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs - physiology ; Amino Acid Substitution ; Animals ; Biological and medical sciences ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line ; Cell physiology ; cholinergic mechanisms ; Dynamin I ; Dynamins ; endocytosis ; Endocytosis - drug effects ; Endocytosis - physiology ; exocytosis ; Fundamental and applied biological sciences. Psychology ; Genes, Dominant ; Green Fluorescent Proteins ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; GTP Phosphohydrolases - pharmacology ; Luminescent Proteins - genetics ; Macromolecular Substances ; Membrane Proteins - metabolism ; Membrane Transport Proteins ; Mice ; Molecular and cellular biology ; Neurons - cytology ; Neurons - metabolism ; Protein Binding - physiology ; Protein Transport - physiology ; Rats ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Secretion. Exocytosis ; synaptic vesicle ; Transfection ; Two-Hybrid System Techniques ; Vesicular Acetylcholine Transport Proteins ; Vesicular Transport Proteins</subject><ispartof>Journal of neurochemistry, 2002-09, Vol.82 (5), p.1221-1228</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</citedby><cites>FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2002.01068.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2002.01068.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15367487$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12358769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, José</creatorcontrib><creatorcontrib>Ferreira, Lucimar T.</creatorcontrib><creatorcontrib>Martins‐Silva, C.</creatorcontrib><creatorcontrib>Santos, Magda S.</creatorcontrib><creatorcontrib>Torres, Gonzalo E.</creatorcontrib><creatorcontrib>Caron, Marc G.</creatorcontrib><creatorcontrib>Gomez, Marcus V.</creatorcontrib><creatorcontrib>Ferguson, Stephen S. G.</creatorcontrib><creatorcontrib>Prado, Marco A. M.</creatorcontrib><creatorcontrib>Prado, Vania F.</creatorcontrib><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</description><subject>Adaptor Proteins, Vesicular Transport</subject><subject>Amino Acid Motifs - physiology</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell physiology</subject><subject>cholinergic mechanisms</subject><subject>Dynamin I</subject><subject>Dynamins</subject><subject>endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>exocytosis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Dominant</subject><subject>Green Fluorescent Proteins</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTP Phosphohydrolases - pharmacology</subject><subject>Luminescent Proteins - genetics</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins - metabolism</subject><subject>Membrane Transport Proteins</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Secretion. Exocytosis</subject><subject>synaptic vesicle</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><subject>Vesicular Acetylcholine Transport Proteins</subject><subject>Vesicular Transport Proteins</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURi0EokPhFZA3sJtgO_4LEotqBBRUFSTK2nIcm_GQOMH2tDO7PkKfkSfB6YzoEja2pXs-33t1AIAYVRhR_mZTYSrwkmLWVAQhUiGMuKx2j8Dib-ExWJQKWdaIkhPwLKUNQphTjp-CE0xqJgVvFuDuKmrnvPnpww84OpjXFl7b5M221xFqY_O-N-ux98HCHHVI0xizjdAH-O2ScWhs36e3UMNuH_Tgw-_bu2RD8tlfW5iynaAOXaFLRpvsxwBvfF7ftzn7WmACdaenPEZoxmHq7e45eOJ0n-yL430Kvn94f7U6X158-fhpdXaxNJRwuTQWMyOobg1ukDEC49ZK0bqaNW3HhOto09bloMi4znInDXOcNl0ra0IkY_UpeH34d4rjr61NWQ0-zdvoYMdtUoJgShjC_wSxFLipKSmgPIAmjilF69QU_aDjXmGkZm1qo2Y7arajZm3qXpvalejLY49tO9juIXj0VIBXR0Ano3tXTBifHjhWc0GlKNy7A3fje7v_7wHU58vV_Kr_AMZ5t0s</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Barbosa, José</creator><creator>Ferreira, Lucimar T.</creator><creator>Martins‐Silva, C.</creator><creator>Santos, Magda S.</creator><creator>Torres, Gonzalo E.</creator><creator>Caron, Marc G.</creator><creator>Gomez, Marcus V.</creator><creator>Ferguson, Stephen S. G.</creator><creator>Prado, Marco A. M.</creator><creator>Prado, Vania F.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200209</creationdate><title>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</title><author>Barbosa, José ; Ferreira, Lucimar T. ; Martins‐Silva, C. ; Santos, Magda S. ; Torres, Gonzalo E. ; Caron, Marc G. ; Gomez, Marcus V. ; Ferguson, Stephen S. G. ; Prado, Marco A. M. ; Prado, Vania F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-ce15c74abc190cc711be87bf359bd57fd49b3d4940cfde6f8c5f649db83228553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptor Proteins, Vesicular Transport</topic><topic>Amino Acid Motifs - physiology</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell physiology</topic><topic>cholinergic mechanisms</topic><topic>Dynamin I</topic><topic>Dynamins</topic><topic>endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>exocytosis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Dominant</topic><topic>Green Fluorescent Proteins</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTP Phosphohydrolases - pharmacology</topic><topic>Luminescent Proteins - genetics</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins - metabolism</topic><topic>Membrane Transport Proteins</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Secretion. Exocytosis</topic><topic>synaptic vesicle</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><topic>Vesicular Acetylcholine Transport Proteins</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, José</creatorcontrib><creatorcontrib>Ferreira, Lucimar T.</creatorcontrib><creatorcontrib>Martins‐Silva, C.</creatorcontrib><creatorcontrib>Santos, Magda S.</creatorcontrib><creatorcontrib>Torres, Gonzalo E.</creatorcontrib><creatorcontrib>Caron, Marc G.</creatorcontrib><creatorcontrib>Gomez, Marcus V.</creatorcontrib><creatorcontrib>Ferguson, Stephen S. G.</creatorcontrib><creatorcontrib>Prado, Marco A. M.</creatorcontrib><creatorcontrib>Prado, Vania F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, José</au><au>Ferreira, Lucimar T.</au><au>Martins‐Silva, C.</au><au>Santos, Magda S.</au><au>Torres, Gonzalo E.</au><au>Caron, Marc G.</au><au>Gomez, Marcus V.</au><au>Ferguson, Stephen S. G.</au><au>Prado, Marco A. M.</au><au>Prado, Vania F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2002-09</date><risdate>2002</risdate><volume>82</volume><issue>5</issue><spage>1221</spage><epage>1228</epage><pages>1221-1228</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)‐tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP‐VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I‐K44A impaired GFP‐VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I‐K44A generated vesicles. A fusion protein containing the VAChT C‐terminal tail precipitated the AP‐2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C‐terminal tail of VAChT interacts with the µ subunit of AP‐2 in a di‐leucine (L485A/L486A) dependent fashion. These observations suggest that the di‐leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12358769</pmid><doi>10.1046/j.1471-4159.2002.01068.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2002-09, Vol.82 (5), p.1221-1228
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_72142501
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Vesicular Transport
Amino Acid Motifs - physiology
Amino Acid Substitution
Animals
Biological and medical sciences
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line
Cell physiology
cholinergic mechanisms
Dynamin I
Dynamins
endocytosis
Endocytosis - drug effects
Endocytosis - physiology
exocytosis
Fundamental and applied biological sciences. Psychology
Genes, Dominant
Green Fluorescent Proteins
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
GTP Phosphohydrolases - pharmacology
Luminescent Proteins - genetics
Macromolecular Substances
Membrane Proteins - metabolism
Membrane Transport Proteins
Mice
Molecular and cellular biology
Neurons - cytology
Neurons - metabolism
Protein Binding - physiology
Protein Transport - physiology
Rats
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Secretion. Exocytosis
synaptic vesicle
Transfection
Two-Hybrid System Techniques
Vesicular Acetylcholine Transport Proteins
Vesicular Transport Proteins
title Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin‐sensitive step and interaction with the AP‐2 adaptor complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trafficking%20of%20the%20vesicular%20acetylcholine%20transporter%20in%20SN56%20cells:%20a%20dynamin%E2%80%90sensitive%20step%20and%20interaction%20with%20the%20AP%E2%80%902%20adaptor%20complex&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Barbosa,%20Jos%C3%A9&rft.date=2002-09&rft.volume=82&rft.issue=5&rft.spage=1221&rft.epage=1228&rft.pages=1221-1228&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2002.01068.x&rft_dat=%3Cproquest_cross%3E72142501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18719342&rft_id=info:pmid/12358769&rfr_iscdi=true