Metabotropic glutamate receptor involvement in phosphoinositide hydrolysis stimulation by an endogenous Na +, K +-ATPase inhibitor and ouabain in neonatal rat brain

The mechanism of action of an endogenous Na +, K +-ATPase inhibitor, termed endobain E, on phosphoinositide hydrolysis was studied in neonatal rat brain cortex and compared with that of ouabain. Lack of additivity for endobain E and glutamate paired stimulation on inositol phosphates accumulation su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research. Developmental brain research 2002-10, Vol.138 (2), p.167-175
Hauptverfasser: Calviño, M.A, Peña, C, Rodrı́guez de Lores Arnaiz, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of action of an endogenous Na +, K +-ATPase inhibitor, termed endobain E, on phosphoinositide hydrolysis was studied in neonatal rat brain cortex and compared with that of ouabain. Lack of additivity for endobain E and glutamate paired stimulation on inositol phosphates accumulation suggested that they share at least a common step on inositol phosphate metabolism, as previously advanced for ouabain. In addition, Cd 2+ sensitivity of endobain E and ouabain effects strengthened the involvement of glutamate receptors. The participation of ionotropic glutamate receptors on endobain E- and ouabain-induced phosphoinositide hydrolysis seems untenable, since antagonists dizocilpine and CNQX proved unable to inhibit these effects. However, the endobain E effect was blocked by 2×10 −4 M L-AP3 (an antagonist for group I mGluRs) when at least a 15-min preincubation protocol was employed. Maximal inhibition of endobain E effect (42%) occurred when L-AP3 preincubation was extended to 60 min, as already shown with glutamate, but only a trend to decrease was recorded with ouabain. At variance, the ouabain effect was reduced to 50% employing 5×10 −4 M MCPG (a competitive antagonist for group I mGluRs), whereas no blockade was observed with endobain E or glutamate. In addition, MPEP (a selective mGluR5 antagonist) partially reduced ouabain, endobain E and glutamate responses and the selective mGluR1 antagonist LY367385 showed no activity at all. To sum up, the present findings support the involvement of mGluR5 in both endobain E and ouabain phosphoinositide hydrolysis stimulation in neonatal rat brain, in spite of dissimilar response to tested antagonists.
ISSN:0165-3806
DOI:10.1016/S0165-3806(02)00469-8