Craniofacial suture stenosis: morphologic effects

Craniofacial anomalies, such as Apert's and Crouzon's syndromes, are presumed to be related to premature growth arrest of cranial base growth sites. However, premature growth arrest at cranial vault sutures in animals appears to play a causative role in the development of cranial deformiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plastic and reconstructive surgery (1963) 1991-10, Vol.88 (4), p.563-571
Hauptverfasser: Persing, J A, Lettieri, J T, Cronin, A J, Wolcott, W P, Singh, V, Morgan, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Craniofacial anomalies, such as Apert's and Crouzon's syndromes, are presumed to be related to premature growth arrest of cranial base growth sites. However, premature growth arrest at cranial vault sutures in animals appears to play a causative role in the development of cranial deformities characteristic of single-suture, or simple, craniosynostosis in humans. To study the possible causative role of cranial vault and other (interface) suture stenoses on the development of craniofacial deformity, a vault suture and an interface suture between the cranial vault and facial skeleton were simultaneously immobilized. Thirty-one New Zealand White rabbits at 9 days of age underwent implantation of dental amalgam growth markers adjacent to cranial vault and facial sutures. In the experimental group (n = 15), methylcyanoacrylate adhesive was applied over the coronal (vault) and frontonasal (interface suture between vault and facial skeleton) sutures to immobilize them. The remaining 16 animals served as sham-treated controls. All animals underwent serial radiographic cephalometry to document growth effects in the cranial vault, cranial base, and facial skeleton. Application of adhesive resulted in statistically significant (p less than 0.05) reduction in growth at the coronal and frontonasal sutures. This was accompanied by an overall significant reduction in neurocranial vault length during the first 30 days of development.
ISSN:0032-1052
DOI:10.1097/00006534-199110000-00001