Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes

A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2002-01, Vol.29 (1-2), p.135-139
Hauptverfasser: Lambeth, Melissa J., Kushmerick, Martin J., Marcinek, David J., Conley, Kevin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1-2
container_start_page 135
container_title Molecular biology reports
container_volume 29
creator Lambeth, Melissa J.
Kushmerick, Martin J.
Marcinek, David J.
Conley, Kevin E.
description A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.
doi_str_mv 10.1023/A:1020305208137
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72104732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72104732</sourcerecordid><originalsourceid>FETCH-LOGICAL-n255t-7003bc991aa8a1e4816b0eafa706ef1d8fb837a12e21f4889c18f4ef69cddd4f3</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0EoqUwsyAUMbAF7myndrqVii-pEgudIzc5VylOUuKkov89rloWpifd--n07h1j1wgPCFw8TidBQEDCQaNQJ2yIiRKxTJU-ZcNgYCx1ggN24f0aACSq5JwNkHOJIOWQLZ6MNy5auV3erKhu3M6XPirrqGp6T5H_IkddAKre544me2dbdm0T_IJctGmpKPPOH-bbJrKu_yF_yc6scZ6ujjpii5fnz9lbPP94fZ9N53HNk6SLFYBY5mmKxmiDJDWOl0DGGgVjslhou9RCGeTE0Uqt0xy1lWTHaV4UhbRixO4Pezdt892T77Kq9Dk5Z2oK-TPFw5VK8ADe_QPXTd_WIVumpARIFO6h2yPULysqsk1bVqbdZX9tBeDmANShtKzuWp_x0CmA1vtv_AIOw3SF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744005712</pqid></control><display><type>article</type><title>Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes</title><source>MEDLINE</source><source>NASA Technical Reports Server</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lambeth, Melissa J. ; Kushmerick, Martin J. ; Marcinek, David J. ; Conley, Kevin E.</creator><creatorcontrib>Lambeth, Melissa J. ; Kushmerick, Martin J. ; Marcinek, David J. ; Conley, Kevin E.</creatorcontrib><description>A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1023/A:1020305208137</identifier><identifier>PMID: 12241044</identifier><language>eng</language><publisher>Legacy CDMS: Springer Nature B.V</publisher><subject>Animals ; Enzymes - metabolism ; Glycogen - metabolism ; Life Sciences (General) ; Male ; Mice ; Models, Biological ; Muscle, Skeletal - metabolism ; Muscular system ; Nuclear Magnetic Resonance, Biomolecular ; Space life sciences</subject><ispartof>Molecular biology reports, 2002-01, Vol.29 (1-2), p.135-139</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12241044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambeth, Melissa J.</creatorcontrib><creatorcontrib>Kushmerick, Martin J.</creatorcontrib><creatorcontrib>Marcinek, David J.</creatorcontrib><creatorcontrib>Conley, Kevin E.</creatorcontrib><title>Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><description>A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.</description><subject>Animals</subject><subject>Enzymes - metabolism</subject><subject>Glycogen - metabolism</subject><subject>Life Sciences (General)</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Space life sciences</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkb1PwzAQxS0EoqUwsyAUMbAF7myndrqVii-pEgudIzc5VylOUuKkov89rloWpifd--n07h1j1wgPCFw8TidBQEDCQaNQJ2yIiRKxTJU-ZcNgYCx1ggN24f0aACSq5JwNkHOJIOWQLZ6MNy5auV3erKhu3M6XPirrqGp6T5H_IkddAKre544me2dbdm0T_IJctGmpKPPOH-bbJrKu_yF_yc6scZ6ujjpii5fnz9lbPP94fZ9N53HNk6SLFYBY5mmKxmiDJDWOl0DGGgVjslhou9RCGeTE0Uqt0xy1lWTHaV4UhbRixO4Pezdt892T77Kq9Dk5Z2oK-TPFw5VK8ADe_QPXTd_WIVumpARIFO6h2yPULysqsk1bVqbdZX9tBeDmANShtKzuWp_x0CmA1vtv_AIOw3SF</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Lambeth, Melissa J.</creator><creator>Kushmerick, Martin J.</creator><creator>Marcinek, David J.</creator><creator>Conley, Kevin E.</creator><general>Springer Nature B.V</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020101</creationdate><title>Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes</title><author>Lambeth, Melissa J. ; Kushmerick, Martin J. ; Marcinek, David J. ; Conley, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n255t-7003bc991aa8a1e4816b0eafa706ef1d8fb837a12e21f4889c18f4ef69cddd4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Enzymes - metabolism</topic><topic>Glycogen - metabolism</topic><topic>Life Sciences (General)</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambeth, Melissa J.</creatorcontrib><creatorcontrib>Kushmerick, Martin J.</creatorcontrib><creatorcontrib>Marcinek, David J.</creatorcontrib><creatorcontrib>Conley, Kevin E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambeth, Melissa J.</au><au>Kushmerick, Martin J.</au><au>Marcinek, David J.</au><au>Conley, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes</atitle><jtitle>Molecular biology reports</jtitle><addtitle>Mol Biol Rep</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>29</volume><issue>1-2</issue><spage>135</spage><epage>139</epage><pages>135-139</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.</abstract><cop>Legacy CDMS</cop><pub>Springer Nature B.V</pub><pmid>12241044</pmid><doi>10.1023/A:1020305208137</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2002-01, Vol.29 (1-2), p.135-139
issn 0301-4851
1573-4978
language eng
recordid cdi_proquest_miscellaneous_72104732
source MEDLINE; NASA Technical Reports Server; SpringerLink Journals - AutoHoldings
subjects Animals
Enzymes - metabolism
Glycogen - metabolism
Life Sciences (General)
Male
Mice
Models, Biological
Muscle, Skeletal - metabolism
Muscular system
Nuclear Magnetic Resonance, Biomolecular
Space life sciences
title Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basal%20glycogenolysis%20in%20mouse%20skeletal%20muscle:%20in%20vitro%20model%20predicts%20in%20vivo%20fluxes&rft.jtitle=Molecular%20biology%20reports&rft.au=Lambeth,%20Melissa%20J.&rft.date=2002-01-01&rft.volume=29&rft.issue=1-2&rft.spage=135&rft.epage=139&rft.pages=135-139&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1023/A:1020305208137&rft_dat=%3Cproquest_pubme%3E72104732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744005712&rft_id=info:pmid/12241044&rfr_iscdi=true