Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1

The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2002-09, Vol.33 (9), p.2324-2328
Hauptverfasser: PLANT, Leigh D, KEMP, Paul J, PEERS, Chris, HENDERSON, Zaineb, PEARSON, Hush A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2328
container_issue 9
container_start_page 2324
container_title Stroke (1970)
container_volume 33
creator PLANT, Leigh D
KEMP, Paul J
PEERS, Chris
HENDERSON, Zaineb
PEARSON, Hush A
description The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of rat cerebellar granule neurons by mediating a standing outward K+ current. In this study we investigate the theory that the transient neuronal depolarization seen during hypoxia is due to the inhibition of TASK-1. Activity of TASK-1 in primary cultures of rat cerebellar granule neurons was investigated by the whole-cell patch-clamp technique. Discriminating pharmacological and electrophysiological maneuvers were used to isolate the specific channel types underlying acute hypoxic depolarizations. Exposure of cells to acute hypoxia resulted in a reversible and highly reproducible mean membrane depolarization of 14.2+/-2.6 mV (n=5; P
doi_str_mv 10.1161/01.STR.0000027440.68031.B0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72066555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72066555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-f0261ff29c9f5ce577915b4bbe90bdd2a44dafaf8545218712247532fbfb26333</originalsourceid><addsrcrecordid>eNpdkF1LHDEUhoO06Nb2L5RBaO9mmpOvmXinYmtREHS9DkkmqZHZyZjsQLe_3mxdWTA3B8LznvPyIHQCuAEQ8ANDc7-8a_D2kZYx3IgOU2jO8QFaACesZoJ0H9ACYyprwqQ8Qp9yftritOOH6AgIAS6wWKCHq80U_wZb9W6Kg07hn16HOFbRV9YlZ9xQPqs_SY_z4KrRzSmOuTKbKk_OBl-CYXwMJryFlmf31zV8Rh-9HrL7spvH6OHn5fLiqr65_fX74uymtkzwde0xEeA9kVZ6bh1vWwncMGOcxKbviWas1177jjNOoGtLbdZySrzxhghK6TH6_rp3SvF5dnmtViHbbefRxTmrlmAhOOcFPHkHPsU5jaWbAtm2RR9mBTp9hWyKOSfn1ZTCSqeNAqy25hUGVcyrvXn137w6xyX8dXdhNivX76M71QX4tgN0tnrwRakNec9RSTAwSV8AirSLlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197780304</pqid></control><display><type>article</type><title>Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>PLANT, Leigh D ; KEMP, Paul J ; PEERS, Chris ; HENDERSON, Zaineb ; PEARSON, Hush A</creator><creatorcontrib>PLANT, Leigh D ; KEMP, Paul J ; PEERS, Chris ; HENDERSON, Zaineb ; PEARSON, Hush A</creatorcontrib><description>The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of rat cerebellar granule neurons by mediating a standing outward K+ current. In this study we investigate the theory that the transient neuronal depolarization seen during hypoxia is due to the inhibition of TASK-1. Activity of TASK-1 in primary cultures of rat cerebellar granule neurons was investigated by the whole-cell patch-clamp technique. Discriminating pharmacological and electrophysiological maneuvers were used to isolate the specific channel types underlying acute hypoxic depolarizations. Exposure of cells to acute hypoxia resulted in a reversible and highly reproducible mean membrane depolarization of 14.2+/-2.6 mV (n=5; P&lt;0.01). Two recognized means of inhibiting TASK-1 (decreasing extracellular pH to 6.4 or exposure to the TASK-1-selective inhibitor anandamide) abolished both the hypoxic depolarization and the hypoxic depression of a standing outward current, identifying TASK-1 as the channel mediating this effect. Our data provide compelling evidence that hypoxia depolarizes central neurons by specific inhibition of TASK-1. Since this hypoxic depolarization may be an early, contributory factor in the response of central neurons to hypoxic/ischemic episodes, TASK-1 may provide a potential therapeutic target in the treatment of stroke.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/01.STR.0000027440.68031.B0</identifier><identifier>PMID: 12215606</identifier><identifier>CODEN: SJCCA7</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Acidosis - metabolism ; Animals ; Arachidonic Acids - pharmacology ; Biological and medical sciences ; Cell Hypoxia - drug effects ; Cell Hypoxia - physiology ; Cells, Cultured ; Endocannabinoids ; Hydrogen-Ion Concentration ; Medical sciences ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Nerve Tissue Proteins - antagonists &amp; inhibitors ; Neurology ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Patch-Clamp Techniques ; Polyunsaturated Alkamides ; Potassium - metabolism ; Potassium Channel Blockers ; Potassium Channels ; Potassium Channels, Tandem Pore Domain ; Rats ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>Stroke (1970), 2002-09, Vol.33 (9), p.2324-2328</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Sep 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-f0261ff29c9f5ce577915b4bbe90bdd2a44dafaf8545218712247532fbfb26333</citedby><cites>FETCH-LOGICAL-c465t-f0261ff29c9f5ce577915b4bbe90bdd2a44dafaf8545218712247532fbfb26333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3688,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13920149$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12215606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PLANT, Leigh D</creatorcontrib><creatorcontrib>KEMP, Paul J</creatorcontrib><creatorcontrib>PEERS, Chris</creatorcontrib><creatorcontrib>HENDERSON, Zaineb</creatorcontrib><creatorcontrib>PEARSON, Hush A</creatorcontrib><title>Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of rat cerebellar granule neurons by mediating a standing outward K+ current. In this study we investigate the theory that the transient neuronal depolarization seen during hypoxia is due to the inhibition of TASK-1. Activity of TASK-1 in primary cultures of rat cerebellar granule neurons was investigated by the whole-cell patch-clamp technique. Discriminating pharmacological and electrophysiological maneuvers were used to isolate the specific channel types underlying acute hypoxic depolarizations. Exposure of cells to acute hypoxia resulted in a reversible and highly reproducible mean membrane depolarization of 14.2+/-2.6 mV (n=5; P&lt;0.01). Two recognized means of inhibiting TASK-1 (decreasing extracellular pH to 6.4 or exposure to the TASK-1-selective inhibitor anandamide) abolished both the hypoxic depolarization and the hypoxic depression of a standing outward current, identifying TASK-1 as the channel mediating this effect. Our data provide compelling evidence that hypoxia depolarizes central neurons by specific inhibition of TASK-1. Since this hypoxic depolarization may be an early, contributory factor in the response of central neurons to hypoxic/ischemic episodes, TASK-1 may provide a potential therapeutic target in the treatment of stroke.</description><subject>Acidosis - metabolism</subject><subject>Animals</subject><subject>Arachidonic Acids - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>Endocannabinoids</subject><subject>Hydrogen-Ion Concentration</subject><subject>Medical sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Neurology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Polyunsaturated Alkamides</subject><subject>Potassium - metabolism</subject><subject>Potassium Channel Blockers</subject><subject>Potassium Channels</subject><subject>Potassium Channels, Tandem Pore Domain</subject><subject>Rats</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkF1LHDEUhoO06Nb2L5RBaO9mmpOvmXinYmtREHS9DkkmqZHZyZjsQLe_3mxdWTA3B8LznvPyIHQCuAEQ8ANDc7-8a_D2kZYx3IgOU2jO8QFaACesZoJ0H9ACYyprwqQ8Qp9yftritOOH6AgIAS6wWKCHq80U_wZb9W6Kg07hn16HOFbRV9YlZ9xQPqs_SY_z4KrRzSmOuTKbKk_OBl-CYXwMJryFlmf31zV8Rh-9HrL7spvH6OHn5fLiqr65_fX74uymtkzwde0xEeA9kVZ6bh1vWwncMGOcxKbviWas1177jjNOoGtLbdZySrzxhghK6TH6_rp3SvF5dnmtViHbbefRxTmrlmAhOOcFPHkHPsU5jaWbAtm2RR9mBTp9hWyKOSfn1ZTCSqeNAqy25hUGVcyrvXn137w6xyX8dXdhNivX76M71QX4tgN0tnrwRakNec9RSTAwSV8AirSLlg</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>PLANT, Leigh D</creator><creator>KEMP, Paul J</creator><creator>PEERS, Chris</creator><creator>HENDERSON, Zaineb</creator><creator>PEARSON, Hush A</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Heart Association, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20020901</creationdate><title>Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1</title><author>PLANT, Leigh D ; KEMP, Paul J ; PEERS, Chris ; HENDERSON, Zaineb ; PEARSON, Hush A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-f0261ff29c9f5ce577915b4bbe90bdd2a44dafaf8545218712247532fbfb26333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acidosis - metabolism</topic><topic>Animals</topic><topic>Arachidonic Acids - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>Endocannabinoids</topic><topic>Hydrogen-Ion Concentration</topic><topic>Medical sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Neurology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Polyunsaturated Alkamides</topic><topic>Potassium - metabolism</topic><topic>Potassium Channel Blockers</topic><topic>Potassium Channels</topic><topic>Potassium Channels, Tandem Pore Domain</topic><topic>Rats</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PLANT, Leigh D</creatorcontrib><creatorcontrib>KEMP, Paul J</creatorcontrib><creatorcontrib>PEERS, Chris</creatorcontrib><creatorcontrib>HENDERSON, Zaineb</creatorcontrib><creatorcontrib>PEARSON, Hush A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PLANT, Leigh D</au><au>KEMP, Paul J</au><au>PEERS, Chris</au><au>HENDERSON, Zaineb</au><au>PEARSON, Hush A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>33</volume><issue>9</issue><spage>2324</spage><epage>2328</epage><pages>2324-2328</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><coden>SJCCA7</coden><abstract>The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of rat cerebellar granule neurons by mediating a standing outward K+ current. In this study we investigate the theory that the transient neuronal depolarization seen during hypoxia is due to the inhibition of TASK-1. Activity of TASK-1 in primary cultures of rat cerebellar granule neurons was investigated by the whole-cell patch-clamp technique. Discriminating pharmacological and electrophysiological maneuvers were used to isolate the specific channel types underlying acute hypoxic depolarizations. Exposure of cells to acute hypoxia resulted in a reversible and highly reproducible mean membrane depolarization of 14.2+/-2.6 mV (n=5; P&lt;0.01). Two recognized means of inhibiting TASK-1 (decreasing extracellular pH to 6.4 or exposure to the TASK-1-selective inhibitor anandamide) abolished both the hypoxic depolarization and the hypoxic depression of a standing outward current, identifying TASK-1 as the channel mediating this effect. Our data provide compelling evidence that hypoxia depolarizes central neurons by specific inhibition of TASK-1. Since this hypoxic depolarization may be an early, contributory factor in the response of central neurons to hypoxic/ischemic episodes, TASK-1 may provide a potential therapeutic target in the treatment of stroke.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>12215606</pmid><doi>10.1161/01.STR.0000027440.68031.B0</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-2499
ispartof Stroke (1970), 2002-09, Vol.33 (9), p.2324-2328
issn 0039-2499
1524-4628
language eng
recordid cdi_proquest_miscellaneous_72066555
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Acidosis - metabolism
Animals
Arachidonic Acids - pharmacology
Biological and medical sciences
Cell Hypoxia - drug effects
Cell Hypoxia - physiology
Cells, Cultured
Endocannabinoids
Hydrogen-Ion Concentration
Medical sciences
Membrane Potentials - drug effects
Membrane Potentials - physiology
Nerve Tissue Proteins - antagonists & inhibitors
Neurology
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Patch-Clamp Techniques
Polyunsaturated Alkamides
Potassium - metabolism
Potassium Channel Blockers
Potassium Channels
Potassium Channels, Tandem Pore Domain
Rats
Vascular diseases and vascular malformations of the nervous system
title Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxic%20depolarization%20of%20cerebellar%20granule%20neurons%20by%20specific%20inhibition%20of%20TASK-1&rft.jtitle=Stroke%20(1970)&rft.au=PLANT,%20Leigh%20D&rft.date=2002-09-01&rft.volume=33&rft.issue=9&rft.spage=2324&rft.epage=2328&rft.pages=2324-2328&rft.issn=0039-2499&rft.eissn=1524-4628&rft.coden=SJCCA7&rft_id=info:doi/10.1161/01.STR.0000027440.68031.B0&rft_dat=%3Cproquest_cross%3E72066555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197780304&rft_id=info:pmid/12215606&rfr_iscdi=true