Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation

A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2002-09, Vol.21 (41), p.6317-6327
Hauptverfasser: KARIMPOUR, Shervin, JUNYANG LOU, SPITZ, Douglas R, HIROTA, Kiichi, KALVAKOLANU, Dhananjaya V, YODOI, Junji, GIUS, David, LIN, Lilie L, RENE, Luis M, LAGUNAS, Lucio, XINRONG MA, KARRA, Sreenivasu, BRADBURY, C. Matthew, MARKOVINA, Stephanie, GOSWAMI, Prabhat C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6327
container_issue 41
container_start_page 6317
container_title Oncogene
container_volume 21
creator KARIMPOUR, Shervin
JUNYANG LOU
SPITZ, Douglas R
HIROTA, Kiichi
KALVAKOLANU, Dhananjaya V
YODOI, Junji
GIUS, David
LIN, Lilie L
RENE, Luis M
LAGUNAS, Lucio
XINRONG MA
KARRA, Sreenivasu
BRADBURY, C. Matthew
MARKOVINA, Stephanie
GOSWAMI, Prabhat C
description A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.
doi_str_mv 10.1038/sj.onc.1205749
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72061031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200275278</galeid><sourcerecordid>A200275278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-48361b3521afe04c741c1e98bf97972330ccbb4538c289eada033e07700b842b3</originalsourceid><addsrcrecordid>eNqFks2OFCEUhStG47SjW5eGaHRXLVyggGVn4l8yiS7GNaFoqqVTDS1Qoz1P4SNLz1TSxowxLC4h3zmXC6dpnhO8JJjKt3m7jMEuCWAumHrQLAgTXcu5Yg-bBVYctwoonDVPct5ijIXC8Lg5IwCEgYBF8-vqm4_JreNPH1Ctky0mu7rbTKMpLqPVl5YgY4u_9uWATEY_3Dgea_lDGCY7OpPQGK0Z_Y0pPgZ07c2d0CF7yMX5UO1uu-R9DLVJiahy_saHDUpm7W9lT5tHgxmzezbX8-br-3dXFx_by88fPl2sLlvbESgtk7QjPeVAzOAws4IRS5yS_aCEEkAptrbvGafSglTOrA2m1GEhMO4lg56eN2_ufPcpfp9cLnrns62zmeDilLUA3NUXJv8FieRKScoq-OovcBunFOoQGjpGKHSyO9q9_CcFghKuKD9ZbczotA9DLMnYY1-9AoxBcBCyUst7qLrWbudtDG7w9fw-gU0x5-QGvU9-Z9JBE6yPcdJ5q2uc9BynKngxX3bqd259wuf8VOD1DJhcv35IJlifTxxVBJSi9Dfrs9K3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227315935</pqid></control><display><type>article</type><title>Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KARIMPOUR, Shervin ; JUNYANG LOU ; SPITZ, Douglas R ; HIROTA, Kiichi ; KALVAKOLANU, Dhananjaya V ; YODOI, Junji ; GIUS, David ; LIN, Lilie L ; RENE, Luis M ; LAGUNAS, Lucio ; XINRONG MA ; KARRA, Sreenivasu ; BRADBURY, C. Matthew ; MARKOVINA, Stephanie ; GOSWAMI, Prabhat C</creator><creatorcontrib>KARIMPOUR, Shervin ; JUNYANG LOU ; SPITZ, Douglas R ; HIROTA, Kiichi ; KALVAKOLANU, Dhananjaya V ; YODOI, Junji ; GIUS, David ; LIN, Lilie L ; RENE, Luis M ; LAGUNAS, Lucio ; XINRONG MA ; KARRA, Sreenivasu ; BRADBURY, C. Matthew ; MARKOVINA, Stephanie ; GOSWAMI, Prabhat C</creatorcontrib><description>A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1205749</identifier><identifier>PMID: 12214272</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>Basingstoke: Nature Publishing</publisher><subject>Activator protein 1 ; Biological and medical sciences ; Biology ; Cancer research ; Cell lines ; Cysteine ; Deoxyribonucleic acid ; DNA ; Fundamental and applied biological sciences. Psychology ; Gene expression ; HeLa Cells ; Humans ; Ionizing radiation ; Localization ; Medical research ; Molecular and cellular biology ; Molecular genetics ; Oncology ; Oxidative stress ; Oxidoreductase ; Proteins ; Radiation ; Redox factor-1 ; Reporter gene ; Selenocysteine ; Signal transduction ; Signal Transduction - genetics ; Thioredoxin ; Thioredoxin Reductase 1 ; Thioredoxin-Disulfide Reductase - genetics ; Thioredoxin-Disulfide Reductase - metabolism ; Thioredoxins - metabolism ; Transcription Factor AP-1 - genetics ; Transcription Factor AP-1 - metabolism ; Transcription factors ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Oncogene, 2002-09, Vol.21 (41), p.6317-6327</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 12, 2002</rights><rights>Macmillan Publishers Limited 2002.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-48361b3521afe04c741c1e98bf97972330ccbb4538c289eada033e07700b842b3</citedby><cites>FETCH-LOGICAL-c612t-48361b3521afe04c741c1e98bf97972330ccbb4538c289eada033e07700b842b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13912993$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12214272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KARIMPOUR, Shervin</creatorcontrib><creatorcontrib>JUNYANG LOU</creatorcontrib><creatorcontrib>SPITZ, Douglas R</creatorcontrib><creatorcontrib>HIROTA, Kiichi</creatorcontrib><creatorcontrib>KALVAKOLANU, Dhananjaya V</creatorcontrib><creatorcontrib>YODOI, Junji</creatorcontrib><creatorcontrib>GIUS, David</creatorcontrib><creatorcontrib>LIN, Lilie L</creatorcontrib><creatorcontrib>RENE, Luis M</creatorcontrib><creatorcontrib>LAGUNAS, Lucio</creatorcontrib><creatorcontrib>XINRONG MA</creatorcontrib><creatorcontrib>KARRA, Sreenivasu</creatorcontrib><creatorcontrib>BRADBURY, C. Matthew</creatorcontrib><creatorcontrib>MARKOVINA, Stephanie</creatorcontrib><creatorcontrib>GOSWAMI, Prabhat C</creatorcontrib><title>Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><description>A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.</description><subject>Activator protein 1</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Cancer research</subject><subject>Cell lines</subject><subject>Cysteine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Localization</subject><subject>Medical research</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Oncology</subject><subject>Oxidative stress</subject><subject>Oxidoreductase</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Redox factor-1</subject><subject>Reporter gene</subject><subject>Selenocysteine</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Thioredoxin</subject><subject>Thioredoxin Reductase 1</subject><subject>Thioredoxin-Disulfide Reductase - genetics</subject><subject>Thioredoxin-Disulfide Reductase - metabolism</subject><subject>Thioredoxins - metabolism</subject><subject>Transcription Factor AP-1 - genetics</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks2OFCEUhStG47SjW5eGaHRXLVyggGVn4l8yiS7GNaFoqqVTDS1Qoz1P4SNLz1TSxowxLC4h3zmXC6dpnhO8JJjKt3m7jMEuCWAumHrQLAgTXcu5Yg-bBVYctwoonDVPct5ijIXC8Lg5IwCEgYBF8-vqm4_JreNPH1Ctky0mu7rbTKMpLqPVl5YgY4u_9uWATEY_3Dgea_lDGCY7OpPQGK0Z_Y0pPgZ07c2d0CF7yMX5UO1uu-R9DLVJiahy_saHDUpm7W9lT5tHgxmzezbX8-br-3dXFx_by88fPl2sLlvbESgtk7QjPeVAzOAws4IRS5yS_aCEEkAptrbvGafSglTOrA2m1GEhMO4lg56eN2_ufPcpfp9cLnrns62zmeDilLUA3NUXJv8FieRKScoq-OovcBunFOoQGjpGKHSyO9q9_CcFghKuKD9ZbczotA9DLMnYY1-9AoxBcBCyUst7qLrWbudtDG7w9fw-gU0x5-QGvU9-Z9JBE6yPcdJ5q2uc9BynKngxX3bqd259wuf8VOD1DJhcv35IJlifTxxVBJSi9Dfrs9K3</recordid><startdate>20020912</startdate><enddate>20020912</enddate><creator>KARIMPOUR, Shervin</creator><creator>JUNYANG LOU</creator><creator>SPITZ, Douglas R</creator><creator>HIROTA, Kiichi</creator><creator>KALVAKOLANU, Dhananjaya V</creator><creator>YODOI, Junji</creator><creator>GIUS, David</creator><creator>LIN, Lilie L</creator><creator>RENE, Luis M</creator><creator>LAGUNAS, Lucio</creator><creator>XINRONG MA</creator><creator>KARRA, Sreenivasu</creator><creator>BRADBURY, C. Matthew</creator><creator>MARKOVINA, Stephanie</creator><creator>GOSWAMI, Prabhat C</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020912</creationdate><title>Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation</title><author>KARIMPOUR, Shervin ; JUNYANG LOU ; SPITZ, Douglas R ; HIROTA, Kiichi ; KALVAKOLANU, Dhananjaya V ; YODOI, Junji ; GIUS, David ; LIN, Lilie L ; RENE, Luis M ; LAGUNAS, Lucio ; XINRONG MA ; KARRA, Sreenivasu ; BRADBURY, C. Matthew ; MARKOVINA, Stephanie ; GOSWAMI, Prabhat C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-48361b3521afe04c741c1e98bf97972330ccbb4538c289eada033e07700b842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Activator protein 1</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Cancer research</topic><topic>Cell lines</topic><topic>Cysteine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Localization</topic><topic>Medical research</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Oncology</topic><topic>Oxidative stress</topic><topic>Oxidoreductase</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Redox factor-1</topic><topic>Reporter gene</topic><topic>Selenocysteine</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Thioredoxin</topic><topic>Thioredoxin Reductase 1</topic><topic>Thioredoxin-Disulfide Reductase - genetics</topic><topic>Thioredoxin-Disulfide Reductase - metabolism</topic><topic>Thioredoxins - metabolism</topic><topic>Transcription Factor AP-1 - genetics</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KARIMPOUR, Shervin</creatorcontrib><creatorcontrib>JUNYANG LOU</creatorcontrib><creatorcontrib>SPITZ, Douglas R</creatorcontrib><creatorcontrib>HIROTA, Kiichi</creatorcontrib><creatorcontrib>KALVAKOLANU, Dhananjaya V</creatorcontrib><creatorcontrib>YODOI, Junji</creatorcontrib><creatorcontrib>GIUS, David</creatorcontrib><creatorcontrib>LIN, Lilie L</creatorcontrib><creatorcontrib>RENE, Luis M</creatorcontrib><creatorcontrib>LAGUNAS, Lucio</creatorcontrib><creatorcontrib>XINRONG MA</creatorcontrib><creatorcontrib>KARRA, Sreenivasu</creatorcontrib><creatorcontrib>BRADBURY, C. Matthew</creatorcontrib><creatorcontrib>MARKOVINA, Stephanie</creatorcontrib><creatorcontrib>GOSWAMI, Prabhat C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KARIMPOUR, Shervin</au><au>JUNYANG LOU</au><au>SPITZ, Douglas R</au><au>HIROTA, Kiichi</au><au>KALVAKOLANU, Dhananjaya V</au><au>YODOI, Junji</au><au>GIUS, David</au><au>LIN, Lilie L</au><au>RENE, Luis M</au><au>LAGUNAS, Lucio</au><au>XINRONG MA</au><au>KARRA, Sreenivasu</au><au>BRADBURY, C. Matthew</au><au>MARKOVINA, Stephanie</au><au>GOSWAMI, Prabhat C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation</atitle><jtitle>Oncogene</jtitle><addtitle>Oncogene</addtitle><date>2002-09-12</date><risdate>2002</risdate><volume>21</volume><issue>41</issue><spage>6317</spage><epage>6327</epage><pages>6317-6327</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.</abstract><cop>Basingstoke</cop><pub>Nature Publishing</pub><pmid>12214272</pmid><doi>10.1038/sj.onc.1205749</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2002-09, Vol.21 (41), p.6317-6327
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_72061031
source MEDLINE; SpringerLink Journals; Nature; EZB-FREE-00999 freely available EZB journals
subjects Activator protein 1
Biological and medical sciences
Biology
Cancer research
Cell lines
Cysteine
Deoxyribonucleic acid
DNA
Fundamental and applied biological sciences. Psychology
Gene expression
HeLa Cells
Humans
Ionizing radiation
Localization
Medical research
Molecular and cellular biology
Molecular genetics
Oncology
Oxidative stress
Oxidoreductase
Proteins
Radiation
Redox factor-1
Reporter gene
Selenocysteine
Signal transduction
Signal Transduction - genetics
Thioredoxin
Thioredoxin Reductase 1
Thioredoxin-Disulfide Reductase - genetics
Thioredoxin-Disulfide Reductase - metabolism
Thioredoxins - metabolism
Transcription Factor AP-1 - genetics
Transcription Factor AP-1 - metabolism
Transcription factors
Transcription. Transcription factor. Splicing. Rna processing
title Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxin%20reductase%20regulates%20AP-1%20activity%20as%20well%20as%20thioredoxin%20nuclear%20localization%20via%20active%20cysteines%20in%20response%20to%20ionizing%20radiation&rft.jtitle=Oncogene&rft.au=KARIMPOUR,%20Shervin&rft.date=2002-09-12&rft.volume=21&rft.issue=41&rft.spage=6317&rft.epage=6327&rft.pages=6317-6327&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1205749&rft_dat=%3Cgale_proqu%3EA200275278%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227315935&rft_id=info:pmid/12214272&rft_galeid=A200275278&rfr_iscdi=true