The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics

Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2002-10, Vol.80 (1), p.42-49
Hauptverfasser: Doig, Steven D., Pickering, Samuel C. R., Lye, Gary J., Woodley, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 42
container_title Biotechnology and bioengineering
container_volume 80
creator Doig, Steven D.
Pickering, Samuel C. R.
Lye, Gary J.
Woodley, John M.
description Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96‐round, 96‐deep square and 24‐round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer‐Villiger oxidation of bicyclo[3.2.0]hept‐2en‐6‐one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass‐transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96‐round well plate the effect of substrate (bicyclo[3.2.0]hept‐2en‐6‐one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5‐L stirred‐tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen‐transfer rates with an upper limit of between 33 mmol · L−1 · h−1 (based solely on product formation) and 390 mmol · L−1 · h−1 (based on product formation and glycerol oxidation) were achieved using a 96‐square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m2 · m−3. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 42–49, 2002.
doi_str_mv 10.1002/bit.10344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72049998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18705089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4574-adc2b556a8775a885650320c01241e6d835f6ce1a60d3358c4a14e3720b3f3903</originalsourceid><addsrcrecordid>eNqF0Utv1DAQAGALgehSOPAHkC8gcQj1I37kSFewVFQgpKXtzXKcydbUG7d2Irr_Hi9Z6Alxsi19M-OZQeglJe8oIeyk9WO58Lp-hBaUNKoirCGP0YIQIisuGnaEnuX8ozyVlvIpOqKMFabFAuX1NeApA4493nqXYnY2AL5N0UHOftjgEdz1EEPceMi4jwnfTXYYfe-dHX0c9oGtj-Vhw270Dp9a2EGqLnwIfgMJx3vfzfLGD1BEfo6e9DZkeHE4j9H3jx_Wy0_V-dfV2fL9eeVqoerKdo61QkirlRJWayEF4Yw4QllNQXaai146oFaSjnOhXW1pDVwx0vKeN4Qfozdz3tLN3QR5NFufHYRgB4hTNkXWTdPo_0KqFRFENwW-neF-UDlBb26T39q0M5SY_SpMWYX5vYpiXx2STu0Wugd5mH0Brw_A7ofeJzs4nx9caUGW7xV3MrufPsDu3xXN6dn6T-lqjvB5hPu_ETbdGKm4Eubyy8pcfr64-kaXV2bFfwG85K__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18705089</pqid></control><display><type>article</type><title>The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Doig, Steven D. ; Pickering, Samuel C. R. ; Lye, Gary J. ; Woodley, John M.</creator><creatorcontrib>Doig, Steven D. ; Pickering, Samuel C. R. ; Lye, Gary J. ; Woodley, John M.</creatorcontrib><description>Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96‐round, 96‐deep square and 24‐round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer‐Villiger oxidation of bicyclo[3.2.0]hept‐2en‐6‐one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass‐transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96‐round well plate the effect of substrate (bicyclo[3.2.0]hept‐2en‐6‐one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5‐L stirred‐tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen‐transfer rates with an upper limit of between 33 mmol · L−1 · h−1 (based solely on product formation) and 390 mmol · L−1 · h−1 (based on product formation and glycerol oxidation) were achieved using a 96‐square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m2 · m−3. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 42–49, 2002.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10344</identifier><identifier>PMID: 12209785</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>biocatalyst ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Bridged Bicyclo Compounds - metabolism ; Bridged Bicyclo Compounds, Heterocyclic - metabolism ; Catalysis ; Cell Line ; cyclohexanone monooxygenase ; Enzyme Stability ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Glycerol - metabolism ; kinetics ; Lactones - metabolism ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microchemistry - instrumentation ; Microchemistry - methods ; microwells ; Miniaturization ; Oxidation-Reduction ; Oxygen - metabolism ; oxygen transfer ; Oxygenases - genetics ; Oxygenases - metabolism ; Pilot Projects ; Reproducibility of Results ; Robotics - methods ; Sensitivity and Specificity ; Stereoisomerism</subject><ispartof>Biotechnology and bioengineering, 2002-10, Vol.80 (1), p.42-49</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 42-49, 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4574-adc2b556a8775a885650320c01241e6d835f6ce1a60d3358c4a14e3720b3f3903</citedby><cites>FETCH-LOGICAL-c4574-adc2b556a8775a885650320c01241e6d835f6ce1a60d3358c4a14e3720b3f3903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13906999$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12209785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doig, Steven D.</creatorcontrib><creatorcontrib>Pickering, Samuel C. R.</creatorcontrib><creatorcontrib>Lye, Gary J.</creatorcontrib><creatorcontrib>Woodley, John M.</creatorcontrib><title>The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96‐round, 96‐deep square and 24‐round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer‐Villiger oxidation of bicyclo[3.2.0]hept‐2en‐6‐one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass‐transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96‐round well plate the effect of substrate (bicyclo[3.2.0]hept‐2en‐6‐one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5‐L stirred‐tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen‐transfer rates with an upper limit of between 33 mmol · L−1 · h−1 (based solely on product formation) and 390 mmol · L−1 · h−1 (based on product formation and glycerol oxidation) were achieved using a 96‐square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m2 · m−3. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 42–49, 2002.</description><subject>biocatalyst</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Bridged Bicyclo Compounds - metabolism</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - metabolism</subject><subject>Catalysis</subject><subject>Cell Line</subject><subject>cyclohexanone monooxygenase</subject><subject>Enzyme Stability</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - metabolism</subject><subject>kinetics</subject><subject>Lactones - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microchemistry - instrumentation</subject><subject>Microchemistry - methods</subject><subject>microwells</subject><subject>Miniaturization</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - metabolism</subject><subject>oxygen transfer</subject><subject>Oxygenases - genetics</subject><subject>Oxygenases - metabolism</subject><subject>Pilot Projects</subject><subject>Reproducibility of Results</subject><subject>Robotics - methods</subject><subject>Sensitivity and Specificity</subject><subject>Stereoisomerism</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAQAGALgehSOPAHkC8gcQj1I37kSFewVFQgpKXtzXKcydbUG7d2Irr_Hi9Z6Alxsi19M-OZQeglJe8oIeyk9WO58Lp-hBaUNKoirCGP0YIQIisuGnaEnuX8ozyVlvIpOqKMFabFAuX1NeApA4493nqXYnY2AL5N0UHOftjgEdz1EEPceMi4jwnfTXYYfe-dHX0c9oGtj-Vhw270Dp9a2EGqLnwIfgMJx3vfzfLGD1BEfo6e9DZkeHE4j9H3jx_Wy0_V-dfV2fL9eeVqoerKdo61QkirlRJWayEF4Yw4QllNQXaai146oFaSjnOhXW1pDVwx0vKeN4Qfozdz3tLN3QR5NFufHYRgB4hTNkXWTdPo_0KqFRFENwW-neF-UDlBb26T39q0M5SY_SpMWYX5vYpiXx2STu0Wugd5mH0Brw_A7ofeJzs4nx9caUGW7xV3MrufPsDu3xXN6dn6T-lqjvB5hPu_ETbdGKm4Eubyy8pcfr64-kaXV2bFfwG85K__</recordid><startdate>20021005</startdate><enddate>20021005</enddate><creator>Doig, Steven D.</creator><creator>Pickering, Samuel C. R.</creator><creator>Lye, Gary J.</creator><creator>Woodley, John M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20021005</creationdate><title>The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics</title><author>Doig, Steven D. ; Pickering, Samuel C. R. ; Lye, Gary J. ; Woodley, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4574-adc2b556a8775a885650320c01241e6d835f6ce1a60d3358c4a14e3720b3f3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>biocatalyst</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Bridged Bicyclo Compounds - metabolism</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - metabolism</topic><topic>Catalysis</topic><topic>Cell Line</topic><topic>cyclohexanone monooxygenase</topic><topic>Enzyme Stability</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - metabolism</topic><topic>kinetics</topic><topic>Lactones - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microchemistry - instrumentation</topic><topic>Microchemistry - methods</topic><topic>microwells</topic><topic>Miniaturization</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - metabolism</topic><topic>oxygen transfer</topic><topic>Oxygenases - genetics</topic><topic>Oxygenases - metabolism</topic><topic>Pilot Projects</topic><topic>Reproducibility of Results</topic><topic>Robotics - methods</topic><topic>Sensitivity and Specificity</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doig, Steven D.</creatorcontrib><creatorcontrib>Pickering, Samuel C. R.</creatorcontrib><creatorcontrib>Lye, Gary J.</creatorcontrib><creatorcontrib>Woodley, John M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doig, Steven D.</au><au>Pickering, Samuel C. R.</au><au>Lye, Gary J.</au><au>Woodley, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2002-10-05</date><risdate>2002</risdate><volume>80</volume><issue>1</issue><spage>42</spage><epage>49</epage><pages>42-49</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96‐round, 96‐deep square and 24‐round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer‐Villiger oxidation of bicyclo[3.2.0]hept‐2en‐6‐one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass‐transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96‐round well plate the effect of substrate (bicyclo[3.2.0]hept‐2en‐6‐one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5‐L stirred‐tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen‐transfer rates with an upper limit of between 33 mmol · L−1 · h−1 (based solely on product formation) and 390 mmol · L−1 · h−1 (based on product formation and glycerol oxidation) were achieved using a 96‐square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m2 · m−3. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 42–49, 2002.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12209785</pmid><doi>10.1002/bit.10344</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2002-10, Vol.80 (1), p.42-49
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_72049998
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects biocatalyst
Biological and medical sciences
Bioreactors
Biotechnology
Bridged Bicyclo Compounds - metabolism
Bridged Bicyclo Compounds, Heterocyclic - metabolism
Catalysis
Cell Line
cyclohexanone monooxygenase
Enzyme Stability
Escherichia coli - genetics
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
Glycerol - metabolism
kinetics
Lactones - metabolism
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microchemistry - instrumentation
Microchemistry - methods
microwells
Miniaturization
Oxidation-Reduction
Oxygen - metabolism
oxygen transfer
Oxygenases - genetics
Oxygenases - metabolism
Pilot Projects
Reproducibility of Results
Robotics - methods
Sensitivity and Specificity
Stereoisomerism
title The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20microscale%20processing%20technologies%20for%20quantification%20of%20biocatalytic%20Baeyer-Villiger%20oxidation%20kinetics&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Doig,%20Steven%20D.&rft.date=2002-10-05&rft.volume=80&rft.issue=1&rft.spage=42&rft.epage=49&rft.pages=42-49&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10344&rft_dat=%3Cproquest_cross%3E18705089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18705089&rft_id=info:pmid/12209785&rfr_iscdi=true