Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units

The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 1991-09, Vol.184 (1), p.359-369
Hauptverfasser: Gruidl, Michael E., Chen, Tony C., Gargano, Silvana, Storlazzi, Aurora, Cascino, Antonio, Mosig, Gisela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 1
container_start_page 359
container_title Virology (New York, N.Y.)
container_volume 184
creator Gruidl, Michael E.
Chen, Tony C.
Gargano, Silvana
Storlazzi, Aurora
Cascino, Antonio
Mosig, Gisela
description The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downstream of it, all of which are transcribed from a middle promoter before the onset of DNA replication, are also part of a larger late transcription unit which includes the base plate genes 25 and 26. The late genes 25 and 26 are transcribed not only late, but also early from one or several early promoters further upstream. Translation, however, is inhibited by secondary structures which sequester the ribosome binding site in the early transcript. We discuss possible advantages of these transcriptional patterns for T4 DNA recombination, replication, and repair. The predicted and in vivo-expressed 23.9-kDa product of gene 26 is smaller than the reported size of gene 26 protein isolated from base plates, suggesting that nascent gp26 might be processed to a larger protein during assembly.
doi_str_mv 10.1016/0042-6822(91)90852-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72038790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0042682291908523</els_id><sourcerecordid>72038790</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1375-44ef755b87b12ad2620ab78423f35212990434cd68dff69d17fa37af54d0ae7b3</originalsourceid><addsrcrecordid>eNo9kc9u1DAQxi0EKtuWNwDJB4TaQ6j_JY4vSFULBamCy_bAyZokk62RNzZ2sqiPwRs32V319GlmfjPSNx8h7zn7zBmvrhhToqhqIS4MvzSsLkUhX5EVZ6YqmFT8NVm9IG_Jac5_2FxrzU7ICa81N7pckf_rf4E20I6YXIiPsEG6VnMjI40eRqQbHDDTC1FSGDoqqsu9jo9Ib39e04QRXKJ3M0SnXf5NG_Rh2NAx0BxhdOD902EBtzGkfRl2mDzE6BYuwZDb5OLowkCnwY35nLzpwWd8d9Qz8vDt6_rme3H_6-7HzfV9gVzqslAKe12WTa0bLqATlWDQ6FoJ2ctScGEMU1K1XVV3fV-ZjusepIa-VB0D1I08I58Od2MKfyfMo9263KL3MGCYstWCyVobNoMfjuDUbLGzMbktpCd7_OE8_3icQ27B97Ol1uUXrGRGVWrBvhwwnE3tHCabW4dDi51L2I62C85yZpdo7ZKbXXKzhtt9tFbKZ67ZlI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72038790</pqid></control><display><type>article</type><title>Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gruidl, Michael E. ; Chen, Tony C. ; Gargano, Silvana ; Storlazzi, Aurora ; Cascino, Antonio ; Mosig, Gisela</creator><creatorcontrib>Gruidl, Michael E. ; Chen, Tony C. ; Gargano, Silvana ; Storlazzi, Aurora ; Cascino, Antonio ; Mosig, Gisela</creatorcontrib><description>The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downstream of it, all of which are transcribed from a middle promoter before the onset of DNA replication, are also part of a larger late transcription unit which includes the base plate genes 25 and 26. The late genes 25 and 26 are transcribed not only late, but also early from one or several early promoters further upstream. Translation, however, is inhibited by secondary structures which sequester the ribosome binding site in the early transcript. We discuss possible advantages of these transcriptional patterns for T4 DNA recombination, replication, and repair. The predicted and in vivo-expressed 23.9-kDa product of gene 26 is smaller than the reported size of gene 26 protein isolated from base plates, suggesting that nascent gp26 might be processed to a larger protein during assembly.</description><identifier>ISSN: 0042-6822</identifier><identifier>EISSN: 1096-0341</identifier><identifier>DOI: 10.1016/0042-6822(91)90852-3</identifier><identifier>PMID: 1871975</identifier><identifier>CODEN: VIRLAX</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Base Sequence ; Biological and medical sciences ; Blotting, Northern ; Cloning, Molecular ; DNA Repair ; DNA, Viral - genetics ; DNA, Viral - isolation &amp; purification ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genes, Viral ; Genetic Complementation Test ; Genetics ; Microbiology ; Models, Structural ; Molecular Sequence Data ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; Restriction Mapping ; RNA Probes ; RNA, Viral - genetics ; RNA, Viral - isolation &amp; purification ; T-Phages - genetics ; Transcription, Genetic ; Virology</subject><ispartof>Virology (New York, N.Y.), 1991-09, Vol.184 (1), p.359-369</ispartof><rights>1991 Academic Press, Inc.</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0042-6822(91)90852-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5094645$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1871975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruidl, Michael E.</creatorcontrib><creatorcontrib>Chen, Tony C.</creatorcontrib><creatorcontrib>Gargano, Silvana</creatorcontrib><creatorcontrib>Storlazzi, Aurora</creatorcontrib><creatorcontrib>Cascino, Antonio</creatorcontrib><creatorcontrib>Mosig, Gisela</creatorcontrib><title>Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units</title><title>Virology (New York, N.Y.)</title><addtitle>Virology</addtitle><description>The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downstream of it, all of which are transcribed from a middle promoter before the onset of DNA replication, are also part of a larger late transcription unit which includes the base plate genes 25 and 26. The late genes 25 and 26 are transcribed not only late, but also early from one or several early promoters further upstream. Translation, however, is inhibited by secondary structures which sequester the ribosome binding site in the early transcript. We discuss possible advantages of these transcriptional patterns for T4 DNA recombination, replication, and repair. The predicted and in vivo-expressed 23.9-kDa product of gene 26 is smaller than the reported size of gene 26 protein isolated from base plates, suggesting that nascent gp26 might be processed to a larger protein during assembly.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Blotting, Northern</subject><subject>Cloning, Molecular</subject><subject>DNA Repair</subject><subject>DNA, Viral - genetics</subject><subject>DNA, Viral - isolation &amp; purification</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Viral</subject><subject>Genetic Complementation Test</subject><subject>Genetics</subject><subject>Microbiology</subject><subject>Models, Structural</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Promoter Regions, Genetic</subject><subject>Restriction Mapping</subject><subject>RNA Probes</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - isolation &amp; purification</subject><subject>T-Phages - genetics</subject><subject>Transcription, Genetic</subject><subject>Virology</subject><issn>0042-6822</issn><issn>1096-0341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kc9u1DAQxi0EKtuWNwDJB4TaQ6j_JY4vSFULBamCy_bAyZokk62RNzZ2sqiPwRs32V319GlmfjPSNx8h7zn7zBmvrhhToqhqIS4MvzSsLkUhX5EVZ6YqmFT8NVm9IG_Jac5_2FxrzU7ICa81N7pckf_rf4E20I6YXIiPsEG6VnMjI40eRqQbHDDTC1FSGDoqqsu9jo9Ib39e04QRXKJ3M0SnXf5NG_Rh2NAx0BxhdOD902EBtzGkfRl2mDzE6BYuwZDb5OLowkCnwY35nLzpwWd8d9Qz8vDt6_rme3H_6-7HzfV9gVzqslAKe12WTa0bLqATlWDQ6FoJ2ctScGEMU1K1XVV3fV-ZjusepIa-VB0D1I08I58Od2MKfyfMo9263KL3MGCYstWCyVobNoMfjuDUbLGzMbktpCd7_OE8_3icQ27B97Ol1uUXrGRGVWrBvhwwnE3tHCabW4dDi51L2I62C85yZpdo7ZKbXXKzhtt9tFbKZ67ZlI4</recordid><startdate>199109</startdate><enddate>199109</enddate><creator>Gruidl, Michael E.</creator><creator>Chen, Tony C.</creator><creator>Gargano, Silvana</creator><creator>Storlazzi, Aurora</creator><creator>Cascino, Antonio</creator><creator>Mosig, Gisela</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199109</creationdate><title>Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units</title><author>Gruidl, Michael E. ; Chen, Tony C. ; Gargano, Silvana ; Storlazzi, Aurora ; Cascino, Antonio ; Mosig, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1375-44ef755b87b12ad2620ab78423f35212990434cd68dff69d17fa37af54d0ae7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Blotting, Northern</topic><topic>Cloning, Molecular</topic><topic>DNA Repair</topic><topic>DNA, Viral - genetics</topic><topic>DNA, Viral - isolation &amp; purification</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Viral</topic><topic>Genetic Complementation Test</topic><topic>Genetics</topic><topic>Microbiology</topic><topic>Models, Structural</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Promoter Regions, Genetic</topic><topic>Restriction Mapping</topic><topic>RNA Probes</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - isolation &amp; purification</topic><topic>T-Phages - genetics</topic><topic>Transcription, Genetic</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruidl, Michael E.</creatorcontrib><creatorcontrib>Chen, Tony C.</creatorcontrib><creatorcontrib>Gargano, Silvana</creatorcontrib><creatorcontrib>Storlazzi, Aurora</creatorcontrib><creatorcontrib>Cascino, Antonio</creatorcontrib><creatorcontrib>Mosig, Gisela</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Virology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruidl, Michael E.</au><au>Chen, Tony C.</au><au>Gargano, Silvana</au><au>Storlazzi, Aurora</au><au>Cascino, Antonio</au><au>Mosig, Gisela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units</atitle><jtitle>Virology (New York, N.Y.)</jtitle><addtitle>Virology</addtitle><date>1991-09</date><risdate>1991</risdate><volume>184</volume><issue>1</issue><spage>359</spage><epage>369</epage><pages>359-369</pages><issn>0042-6822</issn><eissn>1096-0341</eissn><coden>VIRLAX</coden><abstract>The bacteriophage T4 DNA recombination-repair gene uvsY located at or near an origin of DNA replication and adjacent to the late base plate genes 25 and 26. Our present results reveal a complex transcription pattern in the region encompassing these genes. Most significantly, uvsY and two ORFs, downstream of it, all of which are transcribed from a middle promoter before the onset of DNA replication, are also part of a larger late transcription unit which includes the base plate genes 25 and 26. The late genes 25 and 26 are transcribed not only late, but also early from one or several early promoters further upstream. Translation, however, is inhibited by secondary structures which sequester the ribosome binding site in the early transcript. We discuss possible advantages of these transcriptional patterns for T4 DNA recombination, replication, and repair. The predicted and in vivo-expressed 23.9-kDa product of gene 26 is smaller than the reported size of gene 26 protein isolated from base plates, suggesting that nascent gp26 might be processed to a larger protein during assembly.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>1871975</pmid><doi>10.1016/0042-6822(91)90852-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0042-6822
ispartof Virology (New York, N.Y.), 1991-09, Vol.184 (1), p.359-369
issn 0042-6822
1096-0341
language eng
recordid cdi_proquest_miscellaneous_72038790
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Base Sequence
Biological and medical sciences
Blotting, Northern
Cloning, Molecular
DNA Repair
DNA, Viral - genetics
DNA, Viral - isolation & purification
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Genes, Viral
Genetic Complementation Test
Genetics
Microbiology
Models, Structural
Molecular Sequence Data
Nucleic Acid Conformation
Promoter Regions, Genetic
Restriction Mapping
RNA Probes
RNA, Viral - genetics
RNA, Viral - isolation & purification
T-Phages - genetics
Transcription, Genetic
Virology
title Two bacteriophage T4 base plate genes (25 and 26) and the DNA repair Gene uvsY belong to spatially and temporally overlapping transcription units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20bacteriophage%20T4%20base%20plate%20genes%20(25%20and%2026)%20and%20the%20DNA%20repair%20Gene%20uvsY%20belong%20to%20spatially%20and%20temporally%20overlapping%20transcription%20units&rft.jtitle=Virology%20(New%20York,%20N.Y.)&rft.au=Gruidl,%20Michael%20E.&rft.date=1991-09&rft.volume=184&rft.issue=1&rft.spage=359&rft.epage=369&rft.pages=359-369&rft.issn=0042-6822&rft.eissn=1096-0341&rft.coden=VIRLAX&rft_id=info:doi/10.1016/0042-6822(91)90852-3&rft_dat=%3Cproquest_pubme%3E72038790%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72038790&rft_id=info:pmid/1871975&rft_els_id=0042682291908523&rfr_iscdi=true