The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles

Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2002-08, Vol.188 (3), p.237-248
Hauptverfasser: Carpaneto, A, Dalla Serra, M, Menestrina, G, Fogliano, V, Gambale, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 3
container_start_page 237
container_title The Journal of membrane biology
container_volume 188
creator Carpaneto, A
Dalla Serra, M
Menestrina, G
Fogliano, V
Gambale, F
description Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-> F- > gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.
doi_str_mv 10.1007/s00232-001-0187-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72016726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72016726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouq7-AC8SPHirzqRpsx5F_AJBD3oO2XTqVtqkJq3sHv3nZt0FwdN8PfMyzMvYCcIFAqjLCCBykQFgBjhT2XKHTVCmDkohd9kkjUUmyhwP2GGMH4lTqpT77AAFzrBEOWHfrwvi_WI1-MEvG8vbpvcV9bHpqR-ainhchca9-9_ScVFc8zr4jr9EGivfeWfiFjFJ5-svr33oIm-843ZhnKM2FY7H8d0EPica-Jexo28pHrG92rSRjrdxyt7ubl9vHrKn5_vHm-unzOZXMGSIuVFFXapKQGGEACXlXFRYV9aSteUMqZSgjAEhsc5LMpZgpozM5ySrosin7Hyj2wf_OVIcdNdES21rHPkxaiUAS5W-NWVn_8APPwaXbtMClSzgSqgE4QaywccYqNZ9aDoTVhpBr83RG3N0erpem6OXaed0KzzOO6r-NrZu5D8mpIzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217450927</pqid></control><display><type>article</type><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</creator><creatorcontrib>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</creatorcontrib><description>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-&gt; F- &gt; gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-001-0187-x</identifier><identifier>PMID: 12181614</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Bacterial Toxins - administration &amp; dosage ; Bacterial Toxins - metabolism ; Beta vulgaris - microbiology ; Beta vulgaris - physiology ; Cell Membrane Permeability - drug effects ; Cell Membrane Permeability - physiology ; Electric Conductivity ; Ion Channels - biosynthesis ; Ion Channels - drug effects ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Peptides, Cyclic - administration &amp; dosage ; Peptides, Cyclic - metabolism ; Pseudomonas - metabolism ; Sensitivity and Specificity ; Vacuoles - drug effects ; Vacuoles - metabolism</subject><ispartof>The Journal of membrane biology, 2002-08, Vol.188 (3), p.237-248</ispartof><rights>Copyright Springer-Verlag 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12181614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpaneto, A</creatorcontrib><creatorcontrib>Dalla Serra, M</creatorcontrib><creatorcontrib>Menestrina, G</creatorcontrib><creatorcontrib>Fogliano, V</creatorcontrib><creatorcontrib>Gambale, F</creatorcontrib><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><title>The Journal of membrane biology</title><addtitle>J Membr Biol</addtitle><description>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-&gt; F- &gt; gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</description><subject>Bacterial Toxins - administration &amp; dosage</subject><subject>Bacterial Toxins - metabolism</subject><subject>Beta vulgaris - microbiology</subject><subject>Beta vulgaris - physiology</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Electric Conductivity</subject><subject>Ion Channels - biosynthesis</subject><subject>Ion Channels - drug effects</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Peptides, Cyclic - administration &amp; dosage</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Pseudomonas - metabolism</subject><subject>Sensitivity and Specificity</subject><subject>Vacuoles - drug effects</subject><subject>Vacuoles - metabolism</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LxDAQhoMouq7-AC8SPHirzqRpsx5F_AJBD3oO2XTqVtqkJq3sHv3nZt0FwdN8PfMyzMvYCcIFAqjLCCBykQFgBjhT2XKHTVCmDkohd9kkjUUmyhwP2GGMH4lTqpT77AAFzrBEOWHfrwvi_WI1-MEvG8vbpvcV9bHpqR-ainhchca9-9_ScVFc8zr4jr9EGivfeWfiFjFJ5-svr33oIm-843ZhnKM2FY7H8d0EPica-Jexo28pHrG92rSRjrdxyt7ubl9vHrKn5_vHm-unzOZXMGSIuVFFXapKQGGEACXlXFRYV9aSteUMqZSgjAEhsc5LMpZgpozM5ySrosin7Hyj2wf_OVIcdNdES21rHPkxaiUAS5W-NWVn_8APPwaXbtMClSzgSqgE4QaywccYqNZ9aDoTVhpBr83RG3N0erpem6OXaed0KzzOO6r-NrZu5D8mpIzY</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Carpaneto, A</creator><creator>Dalla Serra, M</creator><creator>Menestrina, G</creator><creator>Fogliano, V</creator><creator>Gambale, F</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><author>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacterial Toxins - administration &amp; dosage</topic><topic>Bacterial Toxins - metabolism</topic><topic>Beta vulgaris - microbiology</topic><topic>Beta vulgaris - physiology</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Electric Conductivity</topic><topic>Ion Channels - biosynthesis</topic><topic>Ion Channels - drug effects</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Peptides, Cyclic - administration &amp; dosage</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Pseudomonas - metabolism</topic><topic>Sensitivity and Specificity</topic><topic>Vacuoles - drug effects</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpaneto, A</creatorcontrib><creatorcontrib>Dalla Serra, M</creatorcontrib><creatorcontrib>Menestrina, G</creatorcontrib><creatorcontrib>Fogliano, V</creatorcontrib><creatorcontrib>Gambale, F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpaneto, A</au><au>Dalla Serra, M</au><au>Menestrina, G</au><au>Fogliano, V</au><au>Gambale, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</atitle><jtitle>The Journal of membrane biology</jtitle><addtitle>J Membr Biol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>188</volume><issue>3</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-&gt; F- &gt; gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12181614</pmid><doi>10.1007/s00232-001-0187-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 2002-08, Vol.188 (3), p.237-248
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_miscellaneous_72016726
source MEDLINE; SpringerNature Journals
subjects Bacterial Toxins - administration & dosage
Bacterial Toxins - metabolism
Beta vulgaris - microbiology
Beta vulgaris - physiology
Cell Membrane Permeability - drug effects
Cell Membrane Permeability - physiology
Electric Conductivity
Ion Channels - biosynthesis
Ion Channels - drug effects
Membrane Potentials - drug effects
Membrane Potentials - physiology
Peptides, Cyclic - administration & dosage
Peptides, Cyclic - metabolism
Pseudomonas - metabolism
Sensitivity and Specificity
Vacuoles - drug effects
Vacuoles - metabolism
title The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phytotoxic%20lipodepsipeptide%20syringopeptin%2025A%20from%20Pseudomonas%20syringae%20pv%20syringae%20forms%20ion%20channels%20in%20sugar%20beet%20vacuoles&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Carpaneto,%20A&rft.date=2002-08-01&rft.volume=188&rft.issue=3&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-001-0187-x&rft_dat=%3Cproquest_cross%3E72016726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217450927&rft_id=info:pmid/12181614&rfr_iscdi=true