The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles
Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membran...
Gespeichert in:
Veröffentlicht in: | The Journal of membrane biology 2002-08, Vol.188 (3), p.237-248 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 3 |
container_start_page | 237 |
container_title | The Journal of membrane biology |
container_volume | 188 |
creator | Carpaneto, A Dalla Serra, M Menestrina, G Fogliano, V Gambale, F |
description | Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-> F- > gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes. |
doi_str_mv | 10.1007/s00232-001-0187-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72016726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72016726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouq7-AC8SPHirzqRpsx5F_AJBD3oO2XTqVtqkJq3sHv3nZt0FwdN8PfMyzMvYCcIFAqjLCCBykQFgBjhT2XKHTVCmDkohd9kkjUUmyhwP2GGMH4lTqpT77AAFzrBEOWHfrwvi_WI1-MEvG8vbpvcV9bHpqR-ainhchca9-9_ScVFc8zr4jr9EGivfeWfiFjFJ5-svr33oIm-843ZhnKM2FY7H8d0EPica-Jexo28pHrG92rSRjrdxyt7ubl9vHrKn5_vHm-unzOZXMGSIuVFFXapKQGGEACXlXFRYV9aSteUMqZSgjAEhsc5LMpZgpozM5ySrosin7Hyj2wf_OVIcdNdES21rHPkxaiUAS5W-NWVn_8APPwaXbtMClSzgSqgE4QaywccYqNZ9aDoTVhpBr83RG3N0erpem6OXaed0KzzOO6r-NrZu5D8mpIzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217450927</pqid></control><display><type>article</type><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</creator><creatorcontrib>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</creatorcontrib><description>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-> F- > gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-001-0187-x</identifier><identifier>PMID: 12181614</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Bacterial Toxins - administration & dosage ; Bacterial Toxins - metabolism ; Beta vulgaris - microbiology ; Beta vulgaris - physiology ; Cell Membrane Permeability - drug effects ; Cell Membrane Permeability - physiology ; Electric Conductivity ; Ion Channels - biosynthesis ; Ion Channels - drug effects ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Peptides, Cyclic - administration & dosage ; Peptides, Cyclic - metabolism ; Pseudomonas - metabolism ; Sensitivity and Specificity ; Vacuoles - drug effects ; Vacuoles - metabolism</subject><ispartof>The Journal of membrane biology, 2002-08, Vol.188 (3), p.237-248</ispartof><rights>Copyright Springer-Verlag 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12181614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpaneto, A</creatorcontrib><creatorcontrib>Dalla Serra, M</creatorcontrib><creatorcontrib>Menestrina, G</creatorcontrib><creatorcontrib>Fogliano, V</creatorcontrib><creatorcontrib>Gambale, F</creatorcontrib><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><title>The Journal of membrane biology</title><addtitle>J Membr Biol</addtitle><description>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-> F- > gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</description><subject>Bacterial Toxins - administration & dosage</subject><subject>Bacterial Toxins - metabolism</subject><subject>Beta vulgaris - microbiology</subject><subject>Beta vulgaris - physiology</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Electric Conductivity</subject><subject>Ion Channels - biosynthesis</subject><subject>Ion Channels - drug effects</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Peptides, Cyclic - administration & dosage</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Pseudomonas - metabolism</subject><subject>Sensitivity and Specificity</subject><subject>Vacuoles - drug effects</subject><subject>Vacuoles - metabolism</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LxDAQhoMouq7-AC8SPHirzqRpsx5F_AJBD3oO2XTqVtqkJq3sHv3nZt0FwdN8PfMyzMvYCcIFAqjLCCBykQFgBjhT2XKHTVCmDkohd9kkjUUmyhwP2GGMH4lTqpT77AAFzrBEOWHfrwvi_WI1-MEvG8vbpvcV9bHpqR-ainhchca9-9_ScVFc8zr4jr9EGivfeWfiFjFJ5-svr33oIm-843ZhnKM2FY7H8d0EPica-Jexo28pHrG92rSRjrdxyt7ubl9vHrKn5_vHm-unzOZXMGSIuVFFXapKQGGEACXlXFRYV9aSteUMqZSgjAEhsc5LMpZgpozM5ySrosin7Hyj2wf_OVIcdNdES21rHPkxaiUAS5W-NWVn_8APPwaXbtMClSzgSqgE4QaywccYqNZ9aDoTVhpBr83RG3N0erpem6OXaed0KzzOO6r-NrZu5D8mpIzY</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Carpaneto, A</creator><creator>Dalla Serra, M</creator><creator>Menestrina, G</creator><creator>Fogliano, V</creator><creator>Gambale, F</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</title><author>Carpaneto, A ; Dalla Serra, M ; Menestrina, G ; Fogliano, V ; Gambale, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-113a75f67d205a220744b2d1fdccecc681e6407aa0241f36eace087a43be4d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacterial Toxins - administration & dosage</topic><topic>Bacterial Toxins - metabolism</topic><topic>Beta vulgaris - microbiology</topic><topic>Beta vulgaris - physiology</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Electric Conductivity</topic><topic>Ion Channels - biosynthesis</topic><topic>Ion Channels - drug effects</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Peptides, Cyclic - administration & dosage</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Pseudomonas - metabolism</topic><topic>Sensitivity and Specificity</topic><topic>Vacuoles - drug effects</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpaneto, A</creatorcontrib><creatorcontrib>Dalla Serra, M</creatorcontrib><creatorcontrib>Menestrina, G</creatorcontrib><creatorcontrib>Fogliano, V</creatorcontrib><creatorcontrib>Gambale, F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpaneto, A</au><au>Dalla Serra, M</au><au>Menestrina, G</au><au>Fogliano, V</au><au>Gambale, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles</atitle><jtitle>The Journal of membrane biology</jtitle><addtitle>J Membr Biol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>188</volume><issue>3</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>Syringopeptin 25A (SP(25)A) belongs to a family of cyclic lipodepsipeptides (LDPs) produced by the gram-negative bacterium Pseudomonas syringae, a phytopathogenic organism that affects several plants of agronomic interest. LDPs increase the permeability of plasma and, possibly, intracellular membranes in plant cells. Consistently, SP(25)A forms ion channels in planar lipid bilayers and other model membranes. Here we used sugar beet tonoplasts as a new biological model system to study toxin action. When applied to the vacuoles by a fast perfusion procedure, SP(25)A increases membrane permeability by forming discrete ion channels even at low applied potentials. The SP(25)A channel displays anion selectivity (with a Cl-/K+ permeability ratio of 6.7 +/- 1.3) and has intrinsic rectification properties that derive from a different channel conductance at negative and positive voltages, presumably owing to an asymmetric distribution of fixed charges on the pore. Substitution of chloride with different anions reveals the following selectivity sequence NO3- approximately Cl-> F- > gluconate-, suggesting that the permeation pore is filled with water. The properties of the SP(25)A channels in vacuolar membranes are similar to those observed in planar lipid membranes prepared with asolectin. This work provides a direct demonstration of toxin effects on a native plant membrane, extending to a biological system previous results obtained on artificial planar lipid membranes.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12181614</pmid><doi>10.1007/s00232-001-0187-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2631 |
ispartof | The Journal of membrane biology, 2002-08, Vol.188 (3), p.237-248 |
issn | 0022-2631 1432-1424 |
language | eng |
recordid | cdi_proquest_miscellaneous_72016726 |
source | MEDLINE; SpringerNature Journals |
subjects | Bacterial Toxins - administration & dosage Bacterial Toxins - metabolism Beta vulgaris - microbiology Beta vulgaris - physiology Cell Membrane Permeability - drug effects Cell Membrane Permeability - physiology Electric Conductivity Ion Channels - biosynthesis Ion Channels - drug effects Membrane Potentials - drug effects Membrane Potentials - physiology Peptides, Cyclic - administration & dosage Peptides, Cyclic - metabolism Pseudomonas - metabolism Sensitivity and Specificity Vacuoles - drug effects Vacuoles - metabolism |
title | The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phytotoxic%20lipodepsipeptide%20syringopeptin%2025A%20from%20Pseudomonas%20syringae%20pv%20syringae%20forms%20ion%20channels%20in%20sugar%20beet%20vacuoles&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Carpaneto,%20A&rft.date=2002-08-01&rft.volume=188&rft.issue=3&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-001-0187-x&rft_dat=%3Cproquest_cross%3E72016726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217450927&rft_id=info:pmid/12181614&rfr_iscdi=true |