Modeling the Process of Rate Selection in Neuronal Activity

We present the elements of a mathematical computational model that reflects the experimental finding that the time-scale of a neuron is not fixed; but rather varies with the history of its stimulus. Unlike most physiological models, there are no pre-determined rates associated with transitions betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2002-06, Vol.216 (3), p.337-343
Hauptverfasser: MANEVITZ, LARRY M., MAROM, SHIMON
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 3
container_start_page 337
container_title Journal of theoretical biology
container_volume 216
creator MANEVITZ, LARRY M.
MAROM, SHIMON
description We present the elements of a mathematical computational model that reflects the experimental finding that the time-scale of a neuron is not fixed; but rather varies with the history of its stimulus. Unlike most physiological models, there are no pre-determined rates associated with transitions between states of the system nor are there pre-determined constants associated with adaptation rates; instead, the model is a kind of “modulating automata” where the rates emerge from the history of the system itself. We focus in this paper on the temporal dynamics of a neuron and show how a simple internal structure will give rise to complex temporal behavior. The internal structure modeled here is an abstraction of a reasonably well-understood physiological structure. We also suggest that this behavior can be used to transform a “rate” code into a “temporal one”.
doi_str_mv 10.1006/jtbi.2002.2539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72014756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519302925397</els_id><sourcerecordid>18595625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2b3bf1d1e1fe429990518ce7ef463538f46a3ac84f5869a51cf2ac174f77c5bf3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqWwMqJMbCm-dpzEYqoqXlJ5iMdsOc41uErjYqeV-u9J1UpMiOlIR985w0fIOdAxUJpfzbvKjRmlbMwElwdkCFSKtBQZHJJhX7NUgOQDchLjnFIqM54fkwEwKDkwNiTXj77GxrWfSfeFyUvwBmNMvE1edYfJGzZoOufbxLXJE66Cb3WTTPpq7brNKTmyuol4ts8R-bi9eZ_ep7Pnu4fpZJYaXkCXsopXFmpAsJgxKSUVUBos0GY5F7zsQ3NtysyKMpdagLFMGygyWxRGVJaPyOXudxn89wpjpxYuGmwa3aJfRVUwClkh8n9BKIUUeS9qRMY70AQfY0CrlsEtdNgooGrrVW29qq1XtfXaDy72z6tqgfUvvhfZA-UOwF7E2mFQ0ThsDdYu9ApV7d1f3z_grYW9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18595625</pqid></control><display><type>article</type><title>Modeling the Process of Rate Selection in Neuronal Activity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>MANEVITZ, LARRY M. ; MAROM, SHIMON</creator><creatorcontrib>MANEVITZ, LARRY M. ; MAROM, SHIMON</creatorcontrib><description>We present the elements of a mathematical computational model that reflects the experimental finding that the time-scale of a neuron is not fixed; but rather varies with the history of its stimulus. Unlike most physiological models, there are no pre-determined rates associated with transitions between states of the system nor are there pre-determined constants associated with adaptation rates; instead, the model is a kind of “modulating automata” where the rates emerge from the history of the system itself. We focus in this paper on the temporal dynamics of a neuron and show how a simple internal structure will give rise to complex temporal behavior. The internal structure modeled here is an abstraction of a reasonably well-understood physiological structure. We also suggest that this behavior can be used to transform a “rate” code into a “temporal one”.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1006/jtbi.2002.2539</identifier><identifier>PMID: 12183122</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Animals ; Computer Simulation ; Models, Neurological ; Neurons - physiology ; Time Factors</subject><ispartof>Journal of theoretical biology, 2002-06, Vol.216 (3), p.337-343</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2b3bf1d1e1fe429990518ce7ef463538f46a3ac84f5869a51cf2ac174f77c5bf3</citedby><cites>FETCH-LOGICAL-c371t-2b3bf1d1e1fe429990518ce7ef463538f46a3ac84f5869a51cf2ac174f77c5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519302925397$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12183122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MANEVITZ, LARRY M.</creatorcontrib><creatorcontrib>MAROM, SHIMON</creatorcontrib><title>Modeling the Process of Rate Selection in Neuronal Activity</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We present the elements of a mathematical computational model that reflects the experimental finding that the time-scale of a neuron is not fixed; but rather varies with the history of its stimulus. Unlike most physiological models, there are no pre-determined rates associated with transitions between states of the system nor are there pre-determined constants associated with adaptation rates; instead, the model is a kind of “modulating automata” where the rates emerge from the history of the system itself. We focus in this paper on the temporal dynamics of a neuron and show how a simple internal structure will give rise to complex temporal behavior. The internal structure modeled here is an abstraction of a reasonably well-understood physiological structure. We also suggest that this behavior can be used to transform a “rate” code into a “temporal one”.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Computer Simulation</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Time Factors</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqWwMqJMbCm-dpzEYqoqXlJ5iMdsOc41uErjYqeV-u9J1UpMiOlIR985w0fIOdAxUJpfzbvKjRmlbMwElwdkCFSKtBQZHJJhX7NUgOQDchLjnFIqM54fkwEwKDkwNiTXj77GxrWfSfeFyUvwBmNMvE1edYfJGzZoOufbxLXJE66Cb3WTTPpq7brNKTmyuol4ts8R-bi9eZ_ep7Pnu4fpZJYaXkCXsopXFmpAsJgxKSUVUBos0GY5F7zsQ3NtysyKMpdagLFMGygyWxRGVJaPyOXudxn89wpjpxYuGmwa3aJfRVUwClkh8n9BKIUUeS9qRMY70AQfY0CrlsEtdNgooGrrVW29qq1XtfXaDy72z6tqgfUvvhfZA-UOwF7E2mFQ0ThsDdYu9ApV7d1f3z_grYW9</recordid><startdate>20020607</startdate><enddate>20020607</enddate><creator>MANEVITZ, LARRY M.</creator><creator>MAROM, SHIMON</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20020607</creationdate><title>Modeling the Process of Rate Selection in Neuronal Activity</title><author>MANEVITZ, LARRY M. ; MAROM, SHIMON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2b3bf1d1e1fe429990518ce7ef463538f46a3ac84f5869a51cf2ac174f77c5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Computer Simulation</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANEVITZ, LARRY M.</creatorcontrib><creatorcontrib>MAROM, SHIMON</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANEVITZ, LARRY M.</au><au>MAROM, SHIMON</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Process of Rate Selection in Neuronal Activity</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2002-06-07</date><risdate>2002</risdate><volume>216</volume><issue>3</issue><spage>337</spage><epage>343</epage><pages>337-343</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We present the elements of a mathematical computational model that reflects the experimental finding that the time-scale of a neuron is not fixed; but rather varies with the history of its stimulus. Unlike most physiological models, there are no pre-determined rates associated with transitions between states of the system nor are there pre-determined constants associated with adaptation rates; instead, the model is a kind of “modulating automata” where the rates emerge from the history of the system itself. We focus in this paper on the temporal dynamics of a neuron and show how a simple internal structure will give rise to complex temporal behavior. The internal structure modeled here is an abstraction of a reasonably well-understood physiological structure. We also suggest that this behavior can be used to transform a “rate” code into a “temporal one”.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12183122</pmid><doi>10.1006/jtbi.2002.2539</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2002-06, Vol.216 (3), p.337-343
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_72014756
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Animals
Computer Simulation
Models, Neurological
Neurons - physiology
Time Factors
title Modeling the Process of Rate Selection in Neuronal Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Process%20of%20Rate%20Selection%20in%20Neuronal%20Activity&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=MANEVITZ,%20LARRY%20M.&rft.date=2002-06-07&rft.volume=216&rft.issue=3&rft.spage=337&rft.epage=343&rft.pages=337-343&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1006/jtbi.2002.2539&rft_dat=%3Cproquest_cross%3E18595625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18595625&rft_id=info:pmid/12183122&rft_els_id=S0022519302925397&rfr_iscdi=true