O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals

Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2002-08, Vol.129 (4), p.1899-1907
Hauptverfasser: Lavid, Noa, Wang, Jihong, Shalit, Moshe, Guterman, Inna, Bar, Einat, Beuerle, Till, Menda, Naama, Shafir, Sharoni, Zamir, Dani, Adam, Zach, Vainstein, Alexander, Weiss, David, Pichersky, Eran, Lewinsohn, Efraim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1907
container_issue 4
container_start_page 1899
container_title Plant physiology (Bethesda)
container_volume 129
creator Lavid, Noa
Wang, Jihong
Shalit, Moshe
Guterman, Inna
Bar, Einat
Beuerle, Till
Menda, Naama
Shafir, Sharoni
Zamir, Dani
Adam, Zach
Vainstein, Alexander
Weiss, David
Pichersky, Eran
Lewinsohn, Efraim
description Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayed O-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels of OOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.
doi_str_mv 10.1104/pp.005330
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72012648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280622</jstor_id><sourcerecordid>4280622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-701f90933ca34cc53c1a01dd75559d3b534778c336a1f0f6b121bdde6885602a3</originalsourceid><addsrcrecordid>eNpd0N9r2zAQB3BROpYs28PeRzGDDfbg9vTLlh-7tmsLLS2l7atRZJkoKJarswP576eQ0ECfdOg-d0hfQr5TOKUUxFnfnwJIzuGITKnkLGdSqGMyBUg1KFVNyBfEJQBQTsVnMqGMlqUEMSX6Ib-3w2Ljh6g7bG3UaDG77dbBr22TuS4bFjb76wJuulShwyy02WvwenDeZo8L2wXvTHZpo1unu3WaTkNPAVPTDtrjV_KpTYf9tj9n5OXf1fPFTX73cH17cX6XG1GVQ14CbSuoODeaC2MkN1QDbZpSSlk1fC65KEtlOC80baEt5ukP86axhVKyAKb5jPze7e1jeBstDvXKobHe686GEeuSAWWFUAn-_ACXYYxdelvNqCp4UiyhPztkYkCMtq376FY6bmoK9Tb0uu_rXejJnuwXjvOVbQ5yn3ICv_ZAo9G-TVEbhwfHlZBQbRf92LklDiG-9wVTUDDG_wPsUpHS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218631262</pqid></control><display><type>article</type><title>O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals</title><source>MEDLINE</source><source>OUP_牛津大学出版社现刊</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Lavid, Noa ; Wang, Jihong ; Shalit, Moshe ; Guterman, Inna ; Bar, Einat ; Beuerle, Till ; Menda, Naama ; Shafir, Sharoni ; Zamir, Dani ; Adam, Zach ; Vainstein, Alexander ; Weiss, David ; Pichersky, Eran ; Lewinsohn, Efraim</creator><creatorcontrib>Lavid, Noa ; Wang, Jihong ; Shalit, Moshe ; Guterman, Inna ; Bar, Einat ; Beuerle, Till ; Menda, Naama ; Shafir, Sharoni ; Zamir, Dani ; Adam, Zach ; Vainstein, Alexander ; Weiss, David ; Pichersky, Eran ; Lewinsohn, Efraim</creatorcontrib><description>Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayed O-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels of OOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.005330</identifier><identifier>PMID: 12177504</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Biosynthesis ; Blotting, Northern ; Classical and quantitative genetics. Population genetics. Molecular genetics ; Cloning, Molecular ; Complementary DNA ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; Economic plant physiology ; Enzyme substrates ; Enzymes ; Ethers ; Flowers ; Fundamental and applied biological sciences. Psychology ; Gas Chromatography-Mass Spectrometry ; Generalities. Genetics. Plant material ; Genes. Genome ; Genetics and breeding of economic plants ; Metabolism ; Metabolism. Physicochemical requirements ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Nitrogen metabolism and other ones (excepting carbon metabolism) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Odor emissions ; Petals ; Phenols ; Phenols - metabolism ; Phloroglucinol - metabolism ; Phylogeny ; Plant Extracts - metabolism ; Plant physiology and development ; Plant Stems - enzymology ; Plants ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Resorcinols - metabolism ; RNA, Messenger - metabolism ; Rosa - enzymology ; Rosa - genetics ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Substrate specificity</subject><ispartof>Plant physiology (Bethesda), 2002-08, Vol.129 (4), p.1899-1907</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Aug 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-701f90933ca34cc53c1a01dd75559d3b534778c336a1f0f6b121bdde6885602a3</citedby><cites>FETCH-LOGICAL-c497t-701f90933ca34cc53c1a01dd75559d3b534778c336a1f0f6b121bdde6885602a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280622$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280622$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13845090$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12177504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavid, Noa</creatorcontrib><creatorcontrib>Wang, Jihong</creatorcontrib><creatorcontrib>Shalit, Moshe</creatorcontrib><creatorcontrib>Guterman, Inna</creatorcontrib><creatorcontrib>Bar, Einat</creatorcontrib><creatorcontrib>Beuerle, Till</creatorcontrib><creatorcontrib>Menda, Naama</creatorcontrib><creatorcontrib>Shafir, Sharoni</creatorcontrib><creatorcontrib>Zamir, Dani</creatorcontrib><creatorcontrib>Adam, Zach</creatorcontrib><creatorcontrib>Vainstein, Alexander</creatorcontrib><creatorcontrib>Weiss, David</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Lewinsohn, Efraim</creatorcontrib><title>O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayed O-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels of OOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Blotting, Northern</subject><subject>Classical and quantitative genetics. Population genetics. Molecular genetics</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>Economic plant physiology</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Ethers</subject><subject>Flowers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genes. Genome</subject><subject>Genetics and breeding of economic plants</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen metabolism and other ones (excepting carbon metabolism)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Odor emissions</subject><subject>Petals</subject><subject>Phenols</subject><subject>Phenols - metabolism</subject><subject>Phloroglucinol - metabolism</subject><subject>Phylogeny</subject><subject>Plant Extracts - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Stems - enzymology</subject><subject>Plants</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Resorcinols - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Rosa - enzymology</subject><subject>Rosa - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate specificity</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0N9r2zAQB3BROpYs28PeRzGDDfbg9vTLlh-7tmsLLS2l7atRZJkoKJarswP576eQ0ECfdOg-d0hfQr5TOKUUxFnfnwJIzuGITKnkLGdSqGMyBUg1KFVNyBfEJQBQTsVnMqGMlqUEMSX6Ib-3w2Ljh6g7bG3UaDG77dbBr22TuS4bFjb76wJuulShwyy02WvwenDeZo8L2wXvTHZpo1unu3WaTkNPAVPTDtrjV_KpTYf9tj9n5OXf1fPFTX73cH17cX6XG1GVQ14CbSuoODeaC2MkN1QDbZpSSlk1fC65KEtlOC80baEt5ukP86axhVKyAKb5jPze7e1jeBstDvXKobHe686GEeuSAWWFUAn-_ACXYYxdelvNqCp4UiyhPztkYkCMtq376FY6bmoK9Tb0uu_rXejJnuwXjvOVbQ5yn3ICv_ZAo9G-TVEbhwfHlZBQbRf92LklDiG-9wVTUDDG_wPsUpHS</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Lavid, Noa</creator><creator>Wang, Jihong</creator><creator>Shalit, Moshe</creator><creator>Guterman, Inna</creator><creator>Bar, Einat</creator><creator>Beuerle, Till</creator><creator>Menda, Naama</creator><creator>Shafir, Sharoni</creator><creator>Zamir, Dani</creator><creator>Adam, Zach</creator><creator>Vainstein, Alexander</creator><creator>Weiss, David</creator><creator>Pichersky, Eran</creator><creator>Lewinsohn, Efraim</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals</title><author>Lavid, Noa ; Wang, Jihong ; Shalit, Moshe ; Guterman, Inna ; Bar, Einat ; Beuerle, Till ; Menda, Naama ; Shafir, Sharoni ; Zamir, Dani ; Adam, Zach ; Vainstein, Alexander ; Weiss, David ; Pichersky, Eran ; Lewinsohn, Efraim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-701f90933ca34cc53c1a01dd75559d3b534778c336a1f0f6b121bdde6885602a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Blotting, Northern</topic><topic>Classical and quantitative genetics. Population genetics. Molecular genetics</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>Economic plant physiology</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Ethers</topic><topic>Flowers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genes. Genome</topic><topic>Genetics and breeding of economic plants</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen metabolism and other ones (excepting carbon metabolism)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Odor emissions</topic><topic>Petals</topic><topic>Phenols</topic><topic>Phenols - metabolism</topic><topic>Phloroglucinol - metabolism</topic><topic>Phylogeny</topic><topic>Plant Extracts - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Stems - enzymology</topic><topic>Plants</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Resorcinols - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Rosa - enzymology</topic><topic>Rosa - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavid, Noa</creatorcontrib><creatorcontrib>Wang, Jihong</creatorcontrib><creatorcontrib>Shalit, Moshe</creatorcontrib><creatorcontrib>Guterman, Inna</creatorcontrib><creatorcontrib>Bar, Einat</creatorcontrib><creatorcontrib>Beuerle, Till</creatorcontrib><creatorcontrib>Menda, Naama</creatorcontrib><creatorcontrib>Shafir, Sharoni</creatorcontrib><creatorcontrib>Zamir, Dani</creatorcontrib><creatorcontrib>Adam, Zach</creatorcontrib><creatorcontrib>Vainstein, Alexander</creatorcontrib><creatorcontrib>Weiss, David</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Lewinsohn, Efraim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavid, Noa</au><au>Wang, Jihong</au><au>Shalit, Moshe</au><au>Guterman, Inna</au><au>Bar, Einat</au><au>Beuerle, Till</au><au>Menda, Naama</au><au>Shafir, Sharoni</au><au>Zamir, Dani</au><au>Adam, Zach</au><au>Vainstein, Alexander</au><au>Weiss, David</au><au>Pichersky, Eran</au><au>Lewinsohn, Efraim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>129</volume><issue>4</issue><spage>1899</spage><epage>1907</epage><pages>1899-1907</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayed O-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels of OOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>12177504</pmid><doi>10.1104/pp.005330</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2002-08, Vol.129 (4), p.1899-1907
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_72012648
source MEDLINE; OUP_牛津大学出版社现刊; JSTOR; EZB Electronic Journals Library
subjects Agronomy. Soil science and plant productions
Amino Acid Sequence
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Biosynthesis
Blotting, Northern
Classical and quantitative genetics. Population genetics. Molecular genetics
Cloning, Molecular
Complementary DNA
DNA, Complementary - chemistry
DNA, Complementary - genetics
Economic plant physiology
Enzyme substrates
Enzymes
Ethers
Flowers
Fundamental and applied biological sciences. Psychology
Gas Chromatography-Mass Spectrometry
Generalities. Genetics. Plant material
Genes. Genome
Genetics and breeding of economic plants
Metabolism
Metabolism. Physicochemical requirements
Methyltransferases - genetics
Methyltransferases - metabolism
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Nitrogen metabolism and other ones (excepting carbon metabolism)
Nutrition. Photosynthesis. Respiration. Metabolism
Odor emissions
Petals
Phenols
Phenols - metabolism
Phloroglucinol - metabolism
Phylogeny
Plant Extracts - metabolism
Plant physiology and development
Plant Stems - enzymology
Plants
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Resorcinols - metabolism
RNA, Messenger - metabolism
Rosa - enzymology
Rosa - genetics
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Substrate specificity
title O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-Methyltransferases%20Involved%20in%20the%20Biosynthesis%20of%20Volatile%20Phenolic%20Derivatives%20in%20Rose%20Petals&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lavid,%20Noa&rft.date=2002-08-01&rft.volume=129&rft.issue=4&rft.spage=1899&rft.epage=1907&rft.pages=1899-1907&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.005330&rft_dat=%3Cjstor_proqu%3E4280622%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218631262&rft_id=info:pmid/12177504&rft_jstor_id=4280622&rfr_iscdi=true