Can we separate active from inactive conformations?

Molecular modeling methodologies such as molecular docking, pharmacophore modeling, and 3D-QSAR, rely on conformational searches of small molecules as a starting point. All of these methodologies seek conformations of the small molecules as they bind to target proteins, i.e., their active conformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2002-02, Vol.16 (2), p.105-112
Hauptverfasser: Diller, David J, Merz, Jr, Kenneth M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 2
container_start_page 105
container_title Journal of computer-aided molecular design
container_volume 16
creator Diller, David J
Merz, Jr, Kenneth M
description Molecular modeling methodologies such as molecular docking, pharmacophore modeling, and 3D-QSAR, rely on conformational searches of small molecules as a starting point. All of these methodologies seek conformations of the small molecules as they bind to target proteins, i.e., their active conformations. Thus the question as to whether active conformations can be separated from inactive conformations is extremely relevant. In this paper, 3D-descriptors that separate random conformations from active conformations of small molecules are sought. To select appropriate descriptors, 65 protein-ligand complexes were taken from the protein data bank. For each ligand the active conformation was compared to randomly generated low energy conformations. Descriptors such as solvent accessible surface area, number of internal interactions and radius of gyration appear to be useful for separating the active conformations from the random conformations. The results with all these descriptors indicate that active conformations are less compact that random conformations, i.e., they have more solvent accessible surface area, fewer internal interactions and a larger radius of gyration than random conformations. Thus these descriptors could be useful as weights to bias conformational search procedures to conformations more likely to bind to proteins or as filters to eliminate conformations unlikely to bind to any protein.
doi_str_mv 10.1023/A:1016320106741
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72010981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101873881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p234t-89b136263e7dc917eb242671eaf4114f9a475981cbf92e956c582cb713edf9743</originalsourceid><addsrcrecordid>eNpdkLtLxEAYxBdR9Dyt7SRY2EW_b59ZGzkOX3Bgo2AXNnvfQo7Lw91E8b834tlYDQM_hplh7AzhCoGL68UNAmrBAUEbiXtshsqIXFqF-2wGlkOulXw7YscpbQDAWA2H7Ag5FgVwmDGxdG32SVmi3kU3UOb8UH9QFmLXZHW7c75rQxcbN9Rdm25P2EFw20SnO52z1_u7l-Vjvnp-eFouVnnPhRzywlYoNNeCzNpbNFRxybVBckEiymCdNMoW6KtgOVmlvSq4rwwKWgdrpJizy9_cPnbvI6WhbOrkabt1LXVjKs3P7ClgAi_-gZtujO3UrTTCKGNBFhN0voPGqqF12ce6cfGr_PtCfAPKgl5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>737579048</pqid></control><display><type>article</type><title>Can we separate active from inactive conformations?</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Diller, David J ; Merz, Jr, Kenneth M</creator><creatorcontrib>Diller, David J ; Merz, Jr, Kenneth M</creatorcontrib><description>Molecular modeling methodologies such as molecular docking, pharmacophore modeling, and 3D-QSAR, rely on conformational searches of small molecules as a starting point. All of these methodologies seek conformations of the small molecules as they bind to target proteins, i.e., their active conformations. Thus the question as to whether active conformations can be separated from inactive conformations is extremely relevant. In this paper, 3D-descriptors that separate random conformations from active conformations of small molecules are sought. To select appropriate descriptors, 65 protein-ligand complexes were taken from the protein data bank. For each ligand the active conformation was compared to randomly generated low energy conformations. Descriptors such as solvent accessible surface area, number of internal interactions and radius of gyration appear to be useful for separating the active conformations from the random conformations. The results with all these descriptors indicate that active conformations are less compact that random conformations, i.e., they have more solvent accessible surface area, fewer internal interactions and a larger radius of gyration than random conformations. Thus these descriptors could be useful as weights to bias conformational search procedures to conformations more likely to bind to proteins or as filters to eliminate conformations unlikely to bind to any protein.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1023/A:1016320106741</identifier><identifier>PMID: 12188020</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Computer Simulation ; Ligands ; Models, Molecular ; Molecular Conformation ; Protein Binding ; Proteins ; Quantitative Structure-Activity Relationship ; Solvents ; Surface area</subject><ispartof>Journal of computer-aided molecular design, 2002-02, Vol.16 (2), p.105-112</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12188020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diller, David J</creatorcontrib><creatorcontrib>Merz, Jr, Kenneth M</creatorcontrib><title>Can we separate active from inactive conformations?</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><description>Molecular modeling methodologies such as molecular docking, pharmacophore modeling, and 3D-QSAR, rely on conformational searches of small molecules as a starting point. All of these methodologies seek conformations of the small molecules as they bind to target proteins, i.e., their active conformations. Thus the question as to whether active conformations can be separated from inactive conformations is extremely relevant. In this paper, 3D-descriptors that separate random conformations from active conformations of small molecules are sought. To select appropriate descriptors, 65 protein-ligand complexes were taken from the protein data bank. For each ligand the active conformation was compared to randomly generated low energy conformations. Descriptors such as solvent accessible surface area, number of internal interactions and radius of gyration appear to be useful for separating the active conformations from the random conformations. The results with all these descriptors indicate that active conformations are less compact that random conformations, i.e., they have more solvent accessible surface area, fewer internal interactions and a larger radius of gyration than random conformations. Thus these descriptors could be useful as weights to bias conformational search procedures to conformations more likely to bind to proteins or as filters to eliminate conformations unlikely to bind to any protein.</description><subject>Computer Simulation</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Solvents</subject><subject>Surface area</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkLtLxEAYxBdR9Dyt7SRY2EW_b59ZGzkOX3Bgo2AXNnvfQo7Lw91E8b834tlYDQM_hplh7AzhCoGL68UNAmrBAUEbiXtshsqIXFqF-2wGlkOulXw7YscpbQDAWA2H7Ag5FgVwmDGxdG32SVmi3kU3UOb8UH9QFmLXZHW7c75rQxcbN9Rdm25P2EFw20SnO52z1_u7l-Vjvnp-eFouVnnPhRzywlYoNNeCzNpbNFRxybVBckEiymCdNMoW6KtgOVmlvSq4rwwKWgdrpJizy9_cPnbvI6WhbOrkabt1LXVjKs3P7ClgAi_-gZtujO3UrTTCKGNBFhN0voPGqqF12ce6cfGr_PtCfAPKgl5U</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Diller, David J</creator><creator>Merz, Jr, Kenneth M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20020201</creationdate><title>Can we separate active from inactive conformations?</title><author>Diller, David J ; Merz, Jr, Kenneth M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p234t-89b136263e7dc917eb242671eaf4114f9a475981cbf92e956c582cb713edf9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer Simulation</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Solvents</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diller, David J</creatorcontrib><creatorcontrib>Merz, Jr, Kenneth M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diller, David J</au><au>Merz, Jr, Kenneth M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can we separate active from inactive conformations?</atitle><jtitle>Journal of computer-aided molecular design</jtitle><addtitle>J Comput Aided Mol Des</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>16</volume><issue>2</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Molecular modeling methodologies such as molecular docking, pharmacophore modeling, and 3D-QSAR, rely on conformational searches of small molecules as a starting point. All of these methodologies seek conformations of the small molecules as they bind to target proteins, i.e., their active conformations. Thus the question as to whether active conformations can be separated from inactive conformations is extremely relevant. In this paper, 3D-descriptors that separate random conformations from active conformations of small molecules are sought. To select appropriate descriptors, 65 protein-ligand complexes were taken from the protein data bank. For each ligand the active conformation was compared to randomly generated low energy conformations. Descriptors such as solvent accessible surface area, number of internal interactions and radius of gyration appear to be useful for separating the active conformations from the random conformations. The results with all these descriptors indicate that active conformations are less compact that random conformations, i.e., they have more solvent accessible surface area, fewer internal interactions and a larger radius of gyration than random conformations. Thus these descriptors could be useful as weights to bias conformational search procedures to conformations more likely to bind to proteins or as filters to eliminate conformations unlikely to bind to any protein.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>12188020</pmid><doi>10.1023/A:1016320106741</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2002-02, Vol.16 (2), p.105-112
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_72010981
source MEDLINE; SpringerNature Journals
subjects Computer Simulation
Ligands
Models, Molecular
Molecular Conformation
Protein Binding
Proteins
Quantitative Structure-Activity Relationship
Solvents
Surface area
title Can we separate active from inactive conformations?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20we%20separate%20active%20from%20inactive%20conformations?&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Diller,%20David%20J&rft.date=2002-02-01&rft.volume=16&rft.issue=2&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1023/A:1016320106741&rft_dat=%3Cproquest_pubme%3E2101873881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=737579048&rft_id=info:pmid/12188020&rfr_iscdi=true