New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA
Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding moti...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2004-06, Vol.52 (6), p.1553-1565 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1565 |
---|---|
container_issue | 6 |
container_start_page | 1553 |
container_title | Molecular microbiology |
container_volume | 52 |
creator | Vega, Yolanda Rauch, Markus Banfield, Mark J. Ermolaeva, Svetlana Scortti, Mariela Goebel, Werner Vázquez‐Boland, José A. |
description | Summary
PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S > PrfA*I45S >>> PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity. |
doi_str_mv | 10.1111/j.1365-2958.2004.04052.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72010717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72010717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhFZCFRFdN8CWOkwWLqqJQaQosQGJnOZ6T4lHGHnyhnR0vwIo35ElwOiNArPDGls93fp2jDyFMSU3LebGuKW9FxXrR1YyQpiYNEay-vYcWvwv30YL0glS8Y5-O0KMY14RQTlr-EB1RQbu2Id0CfX8LN3hpY4JgNd54580u-WtwEPE2jGd4k5N2KZ7iFLSLJthtst7pqVT9FkKyBfQjfj-z5SuBdRFrt8IxhWxSDvDz248xOzO3zWT6DPirDXkCZwAHuM6TTj7cJTxGD0Y9RXhyuI_Rx4tXH87fVMt3ry_Pz5aVaSRjlWylIUZ3TI6UNwPlHV8JIfqy4ABk0L3go5CCEWC9Ibyjuh0GImEQLTNaGH6MTva5ZeIvGWJSGxsNTJN24HNUkhFKJJUFfPYPuPY5lPWjon0rmGBtU6BuD5ngYwwwqm2wGx12ihI1-1JrNWtRsxY1-1J3vtRtaX16yM_DBlZ_Gg-CCvD8AOho9DQWCcbGv7iOSybawr3cczd2gt1_D6Curi7nF_8Fw9mzzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196525264</pqid></control><display><type>article</type><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</creator><creatorcontrib>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</creatorcontrib><description>Summary
PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S > PrfA*I45S >>> PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2004.04052.x</identifier><identifier>PMID: 15186408</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Cyclic AMP Receptor Protein ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Listeria monocytogenes - pathogenicity ; Membrane Proteins - genetics ; Microbiology ; Miscellaneous ; Models, Molecular ; Mutation, Missense ; Peptide Termination Factors ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Regulon ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription, Genetic ; Virulence - genetics</subject><ispartof>Molecular microbiology, 2004-06, Vol.52 (6), p.1553-1565</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</citedby><cites>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2004.04052.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2004.04052.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27928,27929,45578,45579,46413,46837</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15837256$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15186408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vega, Yolanda</creatorcontrib><creatorcontrib>Rauch, Markus</creatorcontrib><creatorcontrib>Banfield, Mark J.</creatorcontrib><creatorcontrib>Ermolaeva, Svetlana</creatorcontrib><creatorcontrib>Scortti, Mariela</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><creatorcontrib>Vázquez‐Boland, José A.</creatorcontrib><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S > PrfA*I45S >>> PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</description><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cyclic AMP Receptor Protein</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Membrane Proteins - genetics</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>Peptide Termination Factors</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Regulon</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Virulence - genetics</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhFZCFRFdN8CWOkwWLqqJQaQosQGJnOZ6T4lHGHnyhnR0vwIo35ElwOiNArPDGls93fp2jDyFMSU3LebGuKW9FxXrR1YyQpiYNEay-vYcWvwv30YL0glS8Y5-O0KMY14RQTlr-EB1RQbu2Id0CfX8LN3hpY4JgNd54580u-WtwEPE2jGd4k5N2KZ7iFLSLJthtst7pqVT9FkKyBfQjfj-z5SuBdRFrt8IxhWxSDvDz248xOzO3zWT6DPirDXkCZwAHuM6TTj7cJTxGD0Y9RXhyuI_Rx4tXH87fVMt3ry_Pz5aVaSRjlWylIUZ3TI6UNwPlHV8JIfqy4ABk0L3go5CCEWC9Ibyjuh0GImEQLTNaGH6MTva5ZeIvGWJSGxsNTJN24HNUkhFKJJUFfPYPuPY5lPWjon0rmGBtU6BuD5ngYwwwqm2wGx12ihI1-1JrNWtRsxY1-1J3vtRtaX16yM_DBlZ_Gg-CCvD8AOho9DQWCcbGv7iOSybawr3cczd2gt1_D6Curi7nF_8Fw9mzzg</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Vega, Yolanda</creator><creator>Rauch, Markus</creator><creator>Banfield, Mark J.</creator><creator>Ermolaeva, Svetlana</creator><creator>Scortti, Mariela</creator><creator>Goebel, Werner</creator><creator>Vázquez‐Boland, José A.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><author>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cyclic AMP Receptor Protein</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Membrane Proteins - genetics</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>Peptide Termination Factors</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Regulon</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Yolanda</creatorcontrib><creatorcontrib>Rauch, Markus</creatorcontrib><creatorcontrib>Banfield, Mark J.</creatorcontrib><creatorcontrib>Ermolaeva, Svetlana</creatorcontrib><creatorcontrib>Scortti, Mariela</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><creatorcontrib>Vázquez‐Boland, José A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vega, Yolanda</au><au>Rauch, Markus</au><au>Banfield, Mark J.</au><au>Ermolaeva, Svetlana</au><au>Scortti, Mariela</au><au>Goebel, Werner</au><au>Vázquez‐Boland, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-06</date><risdate>2004</risdate><volume>52</volume><issue>6</issue><spage>1553</spage><epage>1565</epage><pages>1553-1565</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S > PrfA*I45S >>> PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15186408</pmid><doi>10.1111/j.1365-2958.2004.04052.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2004-06, Vol.52 (6), p.1553-1565 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_72010717 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Cyclic AMP Receptor Protein DNA, Bacterial - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-Directed RNA Polymerases - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Genes, Bacterial Listeria monocytogenes - genetics Listeria monocytogenes - metabolism Listeria monocytogenes - pathogenicity Membrane Proteins - genetics Microbiology Miscellaneous Models, Molecular Mutation, Missense Peptide Termination Factors Promoter Regions, Genetic Protein Conformation Protein Structure, Tertiary Receptors, Cell Surface - chemistry Receptors, Cell Surface - genetics Regulon Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - chemistry Transcription Factors - genetics Transcription, Genetic Virulence - genetics |
title | New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Listeria%20monocytogenes%20prfA%20mutants,%20transcriptional%20properties%20of%20PrfA%20proteins%20and%20structure%E2%80%93function%20of%20the%20virulence%20regulator%20PrfA&rft.jtitle=Molecular%20microbiology&rft.au=Vega,%20Yolanda&rft.date=2004-06&rft.volume=52&rft.issue=6&rft.spage=1553&rft.epage=1565&rft.pages=1553-1565&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2004.04052.x&rft_dat=%3Cproquest_cross%3E72010717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196525264&rft_id=info:pmid/15186408&rfr_iscdi=true |