New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA

Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding moti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2004-06, Vol.52 (6), p.1553-1565
Hauptverfasser: Vega, Yolanda, Rauch, Markus, Banfield, Mark J., Ermolaeva, Svetlana, Scortti, Mariela, Goebel, Werner, Vázquez‐Boland, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 6
container_start_page 1553
container_title Molecular microbiology
container_volume 52
creator Vega, Yolanda
Rauch, Markus
Banfield, Mark J.
Ermolaeva, Svetlana
Scortti, Mariela
Goebel, Werner
Vázquez‐Boland, José A.
description Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S > PrfA*I45S >>> PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.
doi_str_mv 10.1111/j.1365-2958.2004.04052.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72010717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72010717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhFZCFRFdN8CWOkwWLqqJQaQosQGJnOZ6T4lHGHnyhnR0vwIo35ElwOiNArPDGls93fp2jDyFMSU3LebGuKW9FxXrR1YyQpiYNEay-vYcWvwv30YL0glS8Y5-O0KMY14RQTlr-EB1RQbu2Id0CfX8LN3hpY4JgNd54580u-WtwEPE2jGd4k5N2KZ7iFLSLJthtst7pqVT9FkKyBfQjfj-z5SuBdRFrt8IxhWxSDvDz248xOzO3zWT6DPirDXkCZwAHuM6TTj7cJTxGD0Y9RXhyuI_Rx4tXH87fVMt3ry_Pz5aVaSRjlWylIUZ3TI6UNwPlHV8JIfqy4ABk0L3go5CCEWC9Ibyjuh0GImEQLTNaGH6MTva5ZeIvGWJSGxsNTJN24HNUkhFKJJUFfPYPuPY5lPWjon0rmGBtU6BuD5ngYwwwqm2wGx12ihI1-1JrNWtRsxY1-1J3vtRtaX16yM_DBlZ_Gg-CCvD8AOho9DQWCcbGv7iOSybawr3cczd2gt1_D6Curi7nF_8Fw9mzzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196525264</pqid></control><display><type>article</type><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</creator><creatorcontrib>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</creatorcontrib><description>Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S &gt; PrfA*I45S &gt;&gt;&gt; PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2004.04052.x</identifier><identifier>PMID: 15186408</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Cyclic AMP Receptor Protein ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Listeria monocytogenes - pathogenicity ; Membrane Proteins - genetics ; Microbiology ; Miscellaneous ; Models, Molecular ; Mutation, Missense ; Peptide Termination Factors ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Regulon ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription, Genetic ; Virulence - genetics</subject><ispartof>Molecular microbiology, 2004-06, Vol.52 (6), p.1553-1565</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</citedby><cites>FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2004.04052.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2004.04052.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27928,27929,45578,45579,46413,46837</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15837256$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15186408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vega, Yolanda</creatorcontrib><creatorcontrib>Rauch, Markus</creatorcontrib><creatorcontrib>Banfield, Mark J.</creatorcontrib><creatorcontrib>Ermolaeva, Svetlana</creatorcontrib><creatorcontrib>Scortti, Mariela</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><creatorcontrib>Vázquez‐Boland, José A.</creatorcontrib><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S &gt; PrfA*I45S &gt;&gt;&gt; PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</description><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cyclic AMP Receptor Protein</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Membrane Proteins - genetics</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>Peptide Termination Factors</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Regulon</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Virulence - genetics</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhFZCFRFdN8CWOkwWLqqJQaQosQGJnOZ6T4lHGHnyhnR0vwIo35ElwOiNArPDGls93fp2jDyFMSU3LebGuKW9FxXrR1YyQpiYNEay-vYcWvwv30YL0glS8Y5-O0KMY14RQTlr-EB1RQbu2Id0CfX8LN3hpY4JgNd54580u-WtwEPE2jGd4k5N2KZ7iFLSLJthtst7pqVT9FkKyBfQjfj-z5SuBdRFrt8IxhWxSDvDz248xOzO3zWT6DPirDXkCZwAHuM6TTj7cJTxGD0Y9RXhyuI_Rx4tXH87fVMt3ry_Pz5aVaSRjlWylIUZ3TI6UNwPlHV8JIfqy4ABk0L3go5CCEWC9Ibyjuh0GImEQLTNaGH6MTva5ZeIvGWJSGxsNTJN24HNUkhFKJJUFfPYPuPY5lPWjon0rmGBtU6BuD5ngYwwwqm2wGx12ihI1-1JrNWtRsxY1-1J3vtRtaX16yM_DBlZ_Gg-CCvD8AOho9DQWCcbGv7iOSybawr3cczd2gt1_D6Curi7nF_8Fw9mzzg</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Vega, Yolanda</creator><creator>Rauch, Markus</creator><creator>Banfield, Mark J.</creator><creator>Ermolaeva, Svetlana</creator><creator>Scortti, Mariela</creator><creator>Goebel, Werner</creator><creator>Vázquez‐Boland, José A.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</title><author>Vega, Yolanda ; Rauch, Markus ; Banfield, Mark J. ; Ermolaeva, Svetlana ; Scortti, Mariela ; Goebel, Werner ; Vázquez‐Boland, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4722-767c0ca827f134b1383d5559001be0ba953f57520e29c0381a6bb07eb562ca5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cyclic AMP Receptor Protein</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Membrane Proteins - genetics</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>Peptide Termination Factors</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Regulon</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Yolanda</creatorcontrib><creatorcontrib>Rauch, Markus</creatorcontrib><creatorcontrib>Banfield, Mark J.</creatorcontrib><creatorcontrib>Ermolaeva, Svetlana</creatorcontrib><creatorcontrib>Scortti, Mariela</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><creatorcontrib>Vázquez‐Boland, José A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vega, Yolanda</au><au>Rauch, Markus</au><au>Banfield, Mark J.</au><au>Ermolaeva, Svetlana</au><au>Scortti, Mariela</au><au>Goebel, Werner</au><au>Vázquez‐Boland, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-06</date><risdate>2004</risdate><volume>52</volume><issue>6</issue><spage>1553</spage><epage>1565</epage><pages>1553-1565</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary PrfA, a transcription factor structurally related to Crp/Fnr, activates Listeria monocytogenes virulence genes during intracellular infection. We report two new PrfA* mutations causing the constitutive overexpression of the PrfA regulon. Leu‐140Phe lies in αD adjacent to the DNA‐binding motif in the C‐terminal domain, like a previously characterized PrfA* mutation (Gly‐145Ser). Ile‐45Ser, in contrast, maps to the N‐terminal β‐roll, a structure similar to that of the Crp cAMP binding site. The in vitro transcriptional properties of recombinant PrfA*I45S and PrfA*G145S were compared to those of PrfAWT at two differentially regulated PrfA‐dependent promoters, PplcA and PactA. The two PrfA* mutations increased the affinity for the target DNA to a different extent, and the differences in DNA binding (PrfA*G145S &gt; PrfA*I45S &gt;&gt;&gt; PrfAWT) correlated with proportional differences in transcriptional activity. The use of the PrfA* proteins revealed that PplcA had a greater affinity for, and was more sensitive to, PrfA than PactA. RNA polymerase (RNAP) initiated transcription independently of PrfA at PplcA, but not at PactA, consistent with bandshift experiments suggesting that PplcA has a greater affinity for RNAP than PactA. Thus, differences in affinity for both PrfA and RNAP appear to determine the different expression pattern of PrfA‐regulated promoters. Modelling of the PrfA* mutations in the crystal structure of PrfA and comparison with structure–function analyses of Crp, in which similar mutations lead to constitutively active (cAMP‐independent) Crp* proteins, suggested that PrfA shares with Crp an analogous mechanism of cofactor‐mediated allosteric shift. Our data support a regulatory model in which changes in PrfA‐dependent gene expression are primarily accounted for by changes in PrfA activity.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15186408</pmid><doi>10.1111/j.1365-2958.2004.04052.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2004-06, Vol.52 (6), p.1553-1565
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_72010717
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
Cyclic AMP Receptor Protein
DNA, Bacterial - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Directed RNA Polymerases - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Genes, Bacterial
Listeria monocytogenes - genetics
Listeria monocytogenes - metabolism
Listeria monocytogenes - pathogenicity
Membrane Proteins - genetics
Microbiology
Miscellaneous
Models, Molecular
Mutation, Missense
Peptide Termination Factors
Promoter Regions, Genetic
Protein Conformation
Protein Structure, Tertiary
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - genetics
Regulon
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription, Genetic
Virulence - genetics
title New Listeria monocytogenes prfA mutants, transcriptional properties of PrfA proteins and structure–function of the virulence regulator PrfA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Listeria%20monocytogenes%20prfA%20mutants,%20transcriptional%20properties%20of%20PrfA%20proteins%20and%20structure%E2%80%93function%20of%20the%20virulence%20regulator%20PrfA&rft.jtitle=Molecular%20microbiology&rft.au=Vega,%20Yolanda&rft.date=2004-06&rft.volume=52&rft.issue=6&rft.spage=1553&rft.epage=1565&rft.pages=1553-1565&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2004.04052.x&rft_dat=%3Cproquest_cross%3E72010717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196525264&rft_id=info:pmid/15186408&rfr_iscdi=true