Smad2 and Smad3 coordinately regulate craniofacial and endodermal development

Ligands of the transforming growth factor-beta (TGF-beta) superfamily are involved in numerous developmental and disease processes. TGF-beta, activins, and nodal ligands operate through the highly homologous Smad2 and Smad3 intracellular mediators. Smad2 mutants exhibit early embryonic lethality, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2004-06, Vol.270 (2), p.411-426
Hauptverfasser: Liu, Ye, Festing, Maria, Thompson, John C, Hester, Mark, Rankin, Scott, El-Hodiri, Heithem M, Zorn, Aaron M, Weinstein, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 2
container_start_page 411
container_title Developmental biology
container_volume 270
creator Liu, Ye
Festing, Maria
Thompson, John C
Hester, Mark
Rankin, Scott
El-Hodiri, Heithem M
Zorn, Aaron M
Weinstein, Michael
description Ligands of the transforming growth factor-beta (TGF-beta) superfamily are involved in numerous developmental and disease processes. TGF-beta, activins, and nodal ligands operate through the highly homologous Smad2 and Smad3 intracellular mediators. Smad2 mutants exhibit early embryonic lethality, while Smad3 mutants are viable, but show a plethora of postnatal phenotypes, including immune dysfunction and skeletal abnormalities. Previously, we have shown that the Smad2 and Smad3 genes function cooperatively during liver morphogenesis. Here we show that Smad2 and Smad3 are required at a full dosage for normal embryonic development. Animals lacking one allele of each gene exhibit a variably penetrant phenotype in which structures in the anterior and ventral midline are reduced or lost; additionally, we demonstrate that this craniofacial defect and the previously reported hepatic phenotypes are both due to defects in the definitive endoderm. A reduction of endodermal gene expression as well as a failure to displace the visceral endoderm occurs despite the formation of a normal foregut pocket. This precedes any defects in anterior patterning and likely causes the abnormalities observed in craniofacial and midline development, as well as hepatogenesis.
doi_str_mv 10.1016/j.ydbio.2004.03.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72000329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160604001940</els_id><sourcerecordid>72000329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-d2cdf28f32a7c92a74da89bf82227811fc1643e6f2186eb1168305911e65a6873</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMo7rr6CwTpyVtrJmnT9OBBFl-w4kEFbyGbTCVL26xJd2H_vd0HeNPLPOCbGeYj5BJoBhTEzSLb2LnzGaM0zyjPKJRHZAy0KtJC5J_HZEwpsBQEFSNyFuOCUsql5KdkBAVIXjI-Ji9vrbYs0Z1NthVPjPfBuk732GySgF-rZigTE3TnfK2N080Oxs56i6EdWotrbPyyxa4_Jye1biJeHPKEfDzcv0-f0tnr4_P0bpaavCr71DJjayZrznRpqiHkVstqXkvGWCkBagMi5yhqBlLgHEBITosKAEWhhSz5hFzv9y6D_15h7FXrosGm0R36VVQl2_7Kqn9BKCvJJRcDyPegCT7GgLVaBtfqsFFA1Va3WqidbrXVrShXg-5h6uqwfjVv0f7OHPwOwO0ewMHG2mFQ0TjsDFoX0PTKevfngR-N05EV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17983836</pqid></control><display><type>article</type><title>Smad2 and Smad3 coordinately regulate craniofacial and endodermal development</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Ye ; Festing, Maria ; Thompson, John C ; Hester, Mark ; Rankin, Scott ; El-Hodiri, Heithem M ; Zorn, Aaron M ; Weinstein, Michael</creator><creatorcontrib>Liu, Ye ; Festing, Maria ; Thompson, John C ; Hester, Mark ; Rankin, Scott ; El-Hodiri, Heithem M ; Zorn, Aaron M ; Weinstein, Michael</creatorcontrib><description>Ligands of the transforming growth factor-beta (TGF-beta) superfamily are involved in numerous developmental and disease processes. TGF-beta, activins, and nodal ligands operate through the highly homologous Smad2 and Smad3 intracellular mediators. Smad2 mutants exhibit early embryonic lethality, while Smad3 mutants are viable, but show a plethora of postnatal phenotypes, including immune dysfunction and skeletal abnormalities. Previously, we have shown that the Smad2 and Smad3 genes function cooperatively during liver morphogenesis. Here we show that Smad2 and Smad3 are required at a full dosage for normal embryonic development. Animals lacking one allele of each gene exhibit a variably penetrant phenotype in which structures in the anterior and ventral midline are reduced or lost; additionally, we demonstrate that this craniofacial defect and the previously reported hepatic phenotypes are both due to defects in the definitive endoderm. A reduction of endodermal gene expression as well as a failure to displace the visceral endoderm occurs despite the formation of a normal foregut pocket. This precedes any defects in anterior patterning and likely causes the abnormalities observed in craniofacial and midline development, as well as hepatogenesis.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2004.03.017</identifier><identifier>PMID: 15183723</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blotting, Western ; Cells, Cultured ; Craniofacial ; Craniofacial Abnormalities - embryology ; Craniofacial Abnormalities - genetics ; DNA Primers ; DNA-Binding Proteins - metabolism ; Endoderm ; Endoderm - metabolism ; Endoderm - physiology ; Foxa2 ; Gene Expression Regulation, Developmental ; Hex ; Histological Techniques ; Holoprosencephaly ; In Situ Hybridization ; Liver ; Mice - embryology ; Mice, Mutant Strains ; Models, Biological ; Signal Transduction - physiology ; Smad ; Smad2 Protein ; Smad3 Protein ; TGF-beta ; Trans-Activators - metabolism ; Transforming Growth Factor beta - metabolism ; Xenopus ; Xenopus Proteins</subject><ispartof>Developmental biology, 2004-06, Vol.270 (2), p.411-426</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-d2cdf28f32a7c92a74da89bf82227811fc1643e6f2186eb1168305911e65a6873</citedby><cites>FETCH-LOGICAL-c497t-d2cdf28f32a7c92a74da89bf82227811fc1643e6f2186eb1168305911e65a6873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2004.03.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15183723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Festing, Maria</creatorcontrib><creatorcontrib>Thompson, John C</creatorcontrib><creatorcontrib>Hester, Mark</creatorcontrib><creatorcontrib>Rankin, Scott</creatorcontrib><creatorcontrib>El-Hodiri, Heithem M</creatorcontrib><creatorcontrib>Zorn, Aaron M</creatorcontrib><creatorcontrib>Weinstein, Michael</creatorcontrib><title>Smad2 and Smad3 coordinately regulate craniofacial and endodermal development</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Ligands of the transforming growth factor-beta (TGF-beta) superfamily are involved in numerous developmental and disease processes. TGF-beta, activins, and nodal ligands operate through the highly homologous Smad2 and Smad3 intracellular mediators. Smad2 mutants exhibit early embryonic lethality, while Smad3 mutants are viable, but show a plethora of postnatal phenotypes, including immune dysfunction and skeletal abnormalities. Previously, we have shown that the Smad2 and Smad3 genes function cooperatively during liver morphogenesis. Here we show that Smad2 and Smad3 are required at a full dosage for normal embryonic development. Animals lacking one allele of each gene exhibit a variably penetrant phenotype in which structures in the anterior and ventral midline are reduced or lost; additionally, we demonstrate that this craniofacial defect and the previously reported hepatic phenotypes are both due to defects in the definitive endoderm. A reduction of endodermal gene expression as well as a failure to displace the visceral endoderm occurs despite the formation of a normal foregut pocket. This precedes any defects in anterior patterning and likely causes the abnormalities observed in craniofacial and midline development, as well as hepatogenesis.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Craniofacial</subject><subject>Craniofacial Abnormalities - embryology</subject><subject>Craniofacial Abnormalities - genetics</subject><subject>DNA Primers</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endoderm</subject><subject>Endoderm - metabolism</subject><subject>Endoderm - physiology</subject><subject>Foxa2</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Hex</subject><subject>Histological Techniques</subject><subject>Holoprosencephaly</subject><subject>In Situ Hybridization</subject><subject>Liver</subject><subject>Mice - embryology</subject><subject>Mice, Mutant Strains</subject><subject>Models, Biological</subject><subject>Signal Transduction - physiology</subject><subject>Smad</subject><subject>Smad2 Protein</subject><subject>Smad3 Protein</subject><subject>TGF-beta</subject><subject>Trans-Activators - metabolism</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Xenopus</subject><subject>Xenopus Proteins</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAQgIMo7rr6CwTpyVtrJmnT9OBBFl-w4kEFbyGbTCVL26xJd2H_vd0HeNPLPOCbGeYj5BJoBhTEzSLb2LnzGaM0zyjPKJRHZAy0KtJC5J_HZEwpsBQEFSNyFuOCUsql5KdkBAVIXjI-Ji9vrbYs0Z1NthVPjPfBuk732GySgF-rZigTE3TnfK2N080Oxs56i6EdWotrbPyyxa4_Jye1biJeHPKEfDzcv0-f0tnr4_P0bpaavCr71DJjayZrznRpqiHkVstqXkvGWCkBagMi5yhqBlLgHEBITosKAEWhhSz5hFzv9y6D_15h7FXrosGm0R36VVQl2_7Kqn9BKCvJJRcDyPegCT7GgLVaBtfqsFFA1Va3WqidbrXVrShXg-5h6uqwfjVv0f7OHPwOwO0ewMHG2mFQ0TjsDFoX0PTKevfngR-N05EV</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Liu, Ye</creator><creator>Festing, Maria</creator><creator>Thompson, John C</creator><creator>Hester, Mark</creator><creator>Rankin, Scott</creator><creator>El-Hodiri, Heithem M</creator><creator>Zorn, Aaron M</creator><creator>Weinstein, Michael</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040615</creationdate><title>Smad2 and Smad3 coordinately regulate craniofacial and endodermal development</title><author>Liu, Ye ; Festing, Maria ; Thompson, John C ; Hester, Mark ; Rankin, Scott ; El-Hodiri, Heithem M ; Zorn, Aaron M ; Weinstein, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-d2cdf28f32a7c92a74da89bf82227811fc1643e6f2186eb1168305911e65a6873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Craniofacial</topic><topic>Craniofacial Abnormalities - embryology</topic><topic>Craniofacial Abnormalities - genetics</topic><topic>DNA Primers</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endoderm</topic><topic>Endoderm - metabolism</topic><topic>Endoderm - physiology</topic><topic>Foxa2</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Hex</topic><topic>Histological Techniques</topic><topic>Holoprosencephaly</topic><topic>In Situ Hybridization</topic><topic>Liver</topic><topic>Mice - embryology</topic><topic>Mice, Mutant Strains</topic><topic>Models, Biological</topic><topic>Signal Transduction - physiology</topic><topic>Smad</topic><topic>Smad2 Protein</topic><topic>Smad3 Protein</topic><topic>TGF-beta</topic><topic>Trans-Activators - metabolism</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Xenopus</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Festing, Maria</creatorcontrib><creatorcontrib>Thompson, John C</creatorcontrib><creatorcontrib>Hester, Mark</creatorcontrib><creatorcontrib>Rankin, Scott</creatorcontrib><creatorcontrib>El-Hodiri, Heithem M</creatorcontrib><creatorcontrib>Zorn, Aaron M</creatorcontrib><creatorcontrib>Weinstein, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ye</au><au>Festing, Maria</au><au>Thompson, John C</au><au>Hester, Mark</au><au>Rankin, Scott</au><au>El-Hodiri, Heithem M</au><au>Zorn, Aaron M</au><au>Weinstein, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smad2 and Smad3 coordinately regulate craniofacial and endodermal development</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2004-06-15</date><risdate>2004</risdate><volume>270</volume><issue>2</issue><spage>411</spage><epage>426</epage><pages>411-426</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Ligands of the transforming growth factor-beta (TGF-beta) superfamily are involved in numerous developmental and disease processes. TGF-beta, activins, and nodal ligands operate through the highly homologous Smad2 and Smad3 intracellular mediators. Smad2 mutants exhibit early embryonic lethality, while Smad3 mutants are viable, but show a plethora of postnatal phenotypes, including immune dysfunction and skeletal abnormalities. Previously, we have shown that the Smad2 and Smad3 genes function cooperatively during liver morphogenesis. Here we show that Smad2 and Smad3 are required at a full dosage for normal embryonic development. Animals lacking one allele of each gene exhibit a variably penetrant phenotype in which structures in the anterior and ventral midline are reduced or lost; additionally, we demonstrate that this craniofacial defect and the previously reported hepatic phenotypes are both due to defects in the definitive endoderm. A reduction of endodermal gene expression as well as a failure to displace the visceral endoderm occurs despite the formation of a normal foregut pocket. This precedes any defects in anterior patterning and likely causes the abnormalities observed in craniofacial and midline development, as well as hepatogenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15183723</pmid><doi>10.1016/j.ydbio.2004.03.017</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2004-06, Vol.270 (2), p.411-426
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_72000329
source MEDLINE; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Animals
Blotting, Western
Cells, Cultured
Craniofacial
Craniofacial Abnormalities - embryology
Craniofacial Abnormalities - genetics
DNA Primers
DNA-Binding Proteins - metabolism
Endoderm
Endoderm - metabolism
Endoderm - physiology
Foxa2
Gene Expression Regulation, Developmental
Hex
Histological Techniques
Holoprosencephaly
In Situ Hybridization
Liver
Mice - embryology
Mice, Mutant Strains
Models, Biological
Signal Transduction - physiology
Smad
Smad2 Protein
Smad3 Protein
TGF-beta
Trans-Activators - metabolism
Transforming Growth Factor beta - metabolism
Xenopus
Xenopus Proteins
title Smad2 and Smad3 coordinately regulate craniofacial and endodermal development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smad2%20and%20Smad3%20coordinately%20regulate%20craniofacial%20and%20endodermal%20development&rft.jtitle=Developmental%20biology&rft.au=Liu,%20Ye&rft.date=2004-06-15&rft.volume=270&rft.issue=2&rft.spage=411&rft.epage=426&rft.pages=411-426&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2004.03.017&rft_dat=%3Cproquest_cross%3E72000329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17983836&rft_id=info:pmid/15183723&rft_els_id=S0012160604001940&rfr_iscdi=true