Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy
Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resol...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2002-05, Vol.40 (1), p.67-71 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Ultrasonics |
container_volume | 40 |
creator | Kojro, Z. Jahny, J. Kim, T.J. Ndop, J. Schmachtl, M. Grill, W. |
description | Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resolve the flow profile also for the components in normal direction with respect to the axis are demonstrated. The methods concerning measurement techniques and data evaluation for scanning acoustic Doppler microscopy are presented. For scanning acoustic correlation microscopy the time dependent phase and amplitude signals resulting from sound waves scattered by the immersed particles (aluminium flakes with a typical diameter of 10 μm) have been analysed by correlation procedures. From the obtained autocorrelation functions the velocity distribution can be derived. Both methods can be applied simultaneously. Data analysis is based on the information contained in the originally obtained images in vector contrast derived from temporal and spatial resolved analogue and digital processing of the acoustic signals. |
doi_str_mv | 10.1016/S0041-624X(02)00092-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71973568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X02000926</els_id><sourcerecordid>71973568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2b1f01c9c96546f9df30f7dd67e0b69b02f2ad99a308bfceeda961d70a5cf8043</originalsourceid><addsrcrecordid>eNqFkE1LxDAQQIMo7rr6E5ReFD1UJ0mbNieR9RMWRFbBW0jzIZFuW5OusP_edreo4MHTXN7MPB5ChxjOMWB2MQdIcMxI8noK5AwAOInZFhrjPEtizlm-jcbfyAjthfAOgJMc0100wgQzAELH6GmuZFW56i2Sql6G1qnoum6a0vho4ZSvg6qbVSQrHYU_oKq9N6VsXV39gvfRjpVlMAfDnKCX25vn6X08e7x7mF7NYkUpb2NSYAtYccVZmjDLtaVgM61ZZqBgvABiidScSwp5YZUxWnKGdQYyVTaHhE7QyeZu4-uPpQmtWLigTFnKynSCIsM8oynLOzDdgL1h8MaKxruF9CuBQfQtxbql6EMJIGLdUrBu72h4sCwWRv9sDfE64HgAZBentF5WyoUfjmYJzUhvernhTJfj0xkvgnKmUkY7b1QrdO3-UfkCqvqSoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71973568</pqid></control><display><type>article</type><title>Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kojro, Z. ; Jahny, J. ; Kim, T.J. ; Ndop, J. ; Schmachtl, M. ; Grill, W.</creator><creatorcontrib>Kojro, Z. ; Jahny, J. ; Kim, T.J. ; Ndop, J. ; Schmachtl, M. ; Grill, W.</creatorcontrib><description>Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resolve the flow profile also for the components in normal direction with respect to the axis are demonstrated. The methods concerning measurement techniques and data evaluation for scanning acoustic Doppler microscopy are presented. For scanning acoustic correlation microscopy the time dependent phase and amplitude signals resulting from sound waves scattered by the immersed particles (aluminium flakes with a typical diameter of 10 μm) have been analysed by correlation procedures. From the obtained autocorrelation functions the velocity distribution can be derived. Both methods can be applied simultaneously. Data analysis is based on the information contained in the originally obtained images in vector contrast derived from temporal and spatial resolved analogue and digital processing of the acoustic signals.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(02)00092-6</identifier><identifier>PMID: 12160023</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic correlation techniques ; Acoustical measurements and instrumentation ; Acoustics ; Doppler imaging ; Exact sciences and technology ; Flow monitoring ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Physics ; SAM</subject><ispartof>Ultrasonics, 2002-05, Vol.40 (1), p.67-71</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-2b1f01c9c96546f9df30f7dd67e0b69b02f2ad99a308bfceeda961d70a5cf8043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(02)00092-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13743724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12160023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kojro, Z.</creatorcontrib><creatorcontrib>Jahny, J.</creatorcontrib><creatorcontrib>Kim, T.J.</creatorcontrib><creatorcontrib>Ndop, J.</creatorcontrib><creatorcontrib>Schmachtl, M.</creatorcontrib><creatorcontrib>Grill, W.</creatorcontrib><title>Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resolve the flow profile also for the components in normal direction with respect to the axis are demonstrated. The methods concerning measurement techniques and data evaluation for scanning acoustic Doppler microscopy are presented. For scanning acoustic correlation microscopy the time dependent phase and amplitude signals resulting from sound waves scattered by the immersed particles (aluminium flakes with a typical diameter of 10 μm) have been analysed by correlation procedures. From the obtained autocorrelation functions the velocity distribution can be derived. Both methods can be applied simultaneously. Data analysis is based on the information contained in the originally obtained images in vector contrast derived from temporal and spatial resolved analogue and digital processing of the acoustic signals.</description><subject>Acoustic correlation techniques</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Doppler imaging</subject><subject>Exact sciences and technology</subject><subject>Flow monitoring</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>SAM</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQQIMo7rr6E5ReFD1UJ0mbNieR9RMWRFbBW0jzIZFuW5OusP_edreo4MHTXN7MPB5ChxjOMWB2MQdIcMxI8noK5AwAOInZFhrjPEtizlm-jcbfyAjthfAOgJMc0100wgQzAELH6GmuZFW56i2Sql6G1qnoum6a0vho4ZSvg6qbVSQrHYU_oKq9N6VsXV39gvfRjpVlMAfDnKCX25vn6X08e7x7mF7NYkUpb2NSYAtYccVZmjDLtaVgM61ZZqBgvABiidScSwp5YZUxWnKGdQYyVTaHhE7QyeZu4-uPpQmtWLigTFnKynSCIsM8oynLOzDdgL1h8MaKxruF9CuBQfQtxbql6EMJIGLdUrBu72h4sCwWRv9sDfE64HgAZBentF5WyoUfjmYJzUhvernhTJfj0xkvgnKmUkY7b1QrdO3-UfkCqvqSoQ</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Kojro, Z.</creator><creator>Jahny, J.</creator><creator>Kim, T.J.</creator><creator>Ndop, J.</creator><creator>Schmachtl, M.</creator><creator>Grill, W.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020501</creationdate><title>Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy</title><author>Kojro, Z. ; Jahny, J. ; Kim, T.J. ; Ndop, J. ; Schmachtl, M. ; Grill, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2b1f01c9c96546f9df30f7dd67e0b69b02f2ad99a308bfceeda961d70a5cf8043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustic correlation techniques</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Doppler imaging</topic><topic>Exact sciences and technology</topic><topic>Flow monitoring</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>SAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojro, Z.</creatorcontrib><creatorcontrib>Jahny, J.</creatorcontrib><creatorcontrib>Kim, T.J.</creatorcontrib><creatorcontrib>Ndop, J.</creatorcontrib><creatorcontrib>Schmachtl, M.</creatorcontrib><creatorcontrib>Grill, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojro, Z.</au><au>Jahny, J.</au><au>Kim, T.J.</au><au>Ndop, J.</au><au>Schmachtl, M.</au><au>Grill, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2002-05-01</date><risdate>2002</risdate><volume>40</volume><issue>1</issue><spage>67</spage><epage>71</epage><pages>67-71</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Acoustic microscopy with vector contrast at 100 MHz in a fluid with immersed particles is used to detect the flow profile in front of a microscopic orifice. The velocity profile concerning the component in axial direction of the focused beam is derived from the phase contrast. Possibilities to resolve the flow profile also for the components in normal direction with respect to the axis are demonstrated. The methods concerning measurement techniques and data evaluation for scanning acoustic Doppler microscopy are presented. For scanning acoustic correlation microscopy the time dependent phase and amplitude signals resulting from sound waves scattered by the immersed particles (aluminium flakes with a typical diameter of 10 μm) have been analysed by correlation procedures. From the obtained autocorrelation functions the velocity distribution can be derived. Both methods can be applied simultaneously. Data analysis is based on the information contained in the originally obtained images in vector contrast derived from temporal and spatial resolved analogue and digital processing of the acoustic signals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12160023</pmid><doi>10.1016/S0041-624X(02)00092-6</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2002-05, Vol.40 (1), p.67-71 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_71973568 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acoustic correlation techniques Acoustical measurements and instrumentation Acoustics Doppler imaging Exact sciences and technology Flow monitoring Fluid dynamics Fundamental areas of phenomenology (including applications) Instrumentation for fluid dynamics Physics SAM |
title | Scanning acoustic Doppler microscopy and scanning acoustic correlation microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20acoustic%20Doppler%20microscopy%20and%20scanning%20acoustic%20correlation%20microscopy&rft.jtitle=Ultrasonics&rft.au=Kojro,%20Z.&rft.date=2002-05-01&rft.volume=40&rft.issue=1&rft.spage=67&rft.epage=71&rft.pages=67-71&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(02)00092-6&rft_dat=%3Cproquest_cross%3E71973568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71973568&rft_id=info:pmid/12160023&rft_els_id=S0041624X02000926&rfr_iscdi=true |