Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations

We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2004-01, Vol.4 (3), p.241-251
Hauptverfasser: Gawad, Shady, Cheung, Karen, Seger, Urban, Bertsch, Arnaud, Renaud, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 3
container_start_page 241
container_title Lab on a chip
container_volume 4
creator Gawad, Shady
Cheung, Karen
Seger, Urban
Bertsch, Arnaud
Renaud, Philippe
description We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.
doi_str_mv 10.1039/b313761a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71955771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71955771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMorq6Cv0ByEi_VTNM2jTdZP2HBi55LmkzYSNvUJIvsv7fLrnqaZ4aHF-Yl5ALYDTAub1sOXFSgDsgJFIJnDGp5-MdSzMhpjJ-MQVlU9TGZQQmlFHV1QvSDww51Ck7TOG7BR-3HDXUDVbR3Ovhe6ZUb0FDb-W-qN8n3mDDc0bRCHzA5rTqqBkPHoPRu036IzmBQyU10Ro6s6iKe7-ecfDw9vi9esuXb8-vifplpXpUpA4nMiqIsDDJVc1tCLqCoTaGLGivbtkaKVgKfTrnMlaiYZbnRNmfSVKLmfE6udrlj8F9rjKnpXdTYdWpAv46NAFmWQsAkXu_E6bsYA9pmDK5XYdMAa7aFNr-FTurlPnPd9mj-xX2D_Ae0FnHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71955771</pqid></control><display><type>article</type><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><source>MEDLINE</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</creator><creatorcontrib>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</creatorcontrib><description>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b313761a</identifier><identifier>PMID: 15159786</identifier><language>eng</language><publisher>England</publisher><subject>Cell Physiological Phenomena ; Electric Impedance ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Models, Biological ; Spectrum Analysis - instrumentation</subject><ispartof>Lab on a chip, 2004-01, Vol.4 (3), p.241-251</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15159786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gawad, Shady</creatorcontrib><creatorcontrib>Cheung, Karen</creatorcontrib><creatorcontrib>Seger, Urban</creatorcontrib><creatorcontrib>Bertsch, Arnaud</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</description><subject>Cell Physiological Phenomena</subject><subject>Electric Impedance</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Models, Biological</subject><subject>Spectrum Analysis - instrumentation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMorq6Cv0ByEi_VTNM2jTdZP2HBi55LmkzYSNvUJIvsv7fLrnqaZ4aHF-Yl5ALYDTAub1sOXFSgDsgJFIJnDGp5-MdSzMhpjJ-MQVlU9TGZQQmlFHV1QvSDww51Ck7TOG7BR-3HDXUDVbR3Ovhe6ZUb0FDb-W-qN8n3mDDc0bRCHzA5rTqqBkPHoPRu036IzmBQyU10Ro6s6iKe7-ecfDw9vi9esuXb8-vifplpXpUpA4nMiqIsDDJVc1tCLqCoTaGLGivbtkaKVgKfTrnMlaiYZbnRNmfSVKLmfE6udrlj8F9rjKnpXdTYdWpAv46NAFmWQsAkXu_E6bsYA9pmDK5XYdMAa7aFNr-FTurlPnPd9mj-xX2D_Ae0FnHH</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Gawad, Shady</creator><creator>Cheung, Karen</creator><creator>Seger, Urban</creator><creator>Bertsch, Arnaud</creator><creator>Renaud, Philippe</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><author>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cell Physiological Phenomena</topic><topic>Electric Impedance</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Models, Biological</topic><topic>Spectrum Analysis - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawad, Shady</creatorcontrib><creatorcontrib>Cheung, Karen</creatorcontrib><creatorcontrib>Seger, Urban</creatorcontrib><creatorcontrib>Bertsch, Arnaud</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawad, Shady</au><au>Cheung, Karen</au><au>Seger, Urban</au><au>Bertsch, Arnaud</au><au>Renaud, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>4</volume><issue>3</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</abstract><cop>England</cop><pmid>15159786</pmid><doi>10.1039/b313761a</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2004-01, Vol.4 (3), p.241-251
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_71955771
source MEDLINE; Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cell Physiological Phenomena
Electric Impedance
Flow Cytometry - instrumentation
Flow Cytometry - methods
Models, Biological
Spectrum Analysis - instrumentation
title Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20spectroscopy%20in%20a%20micromachined%20flow%20cytometer:%20theoretical%20and%20practical%20considerations&rft.jtitle=Lab%20on%20a%20chip&rft.au=Gawad,%20Shady&rft.date=2004-01-01&rft.volume=4&rft.issue=3&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b313761a&rft_dat=%3Cproquest_cross%3E71955771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71955771&rft_id=info:pmid/15159786&rfr_iscdi=true