Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations
We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to des...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2004-01, Vol.4 (3), p.241-251 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | Lab on a chip |
container_volume | 4 |
creator | Gawad, Shady Cheung, Karen Seger, Urban Bertsch, Arnaud Renaud, Philippe |
description | We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor. |
doi_str_mv | 10.1039/b313761a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71955771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71955771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMorq6Cv0ByEi_VTNM2jTdZP2HBi55LmkzYSNvUJIvsv7fLrnqaZ4aHF-Yl5ALYDTAub1sOXFSgDsgJFIJnDGp5-MdSzMhpjJ-MQVlU9TGZQQmlFHV1QvSDww51Ck7TOG7BR-3HDXUDVbR3Ovhe6ZUb0FDb-W-qN8n3mDDc0bRCHzA5rTqqBkPHoPRu036IzmBQyU10Ro6s6iKe7-ecfDw9vi9esuXb8-vifplpXpUpA4nMiqIsDDJVc1tCLqCoTaGLGivbtkaKVgKfTrnMlaiYZbnRNmfSVKLmfE6udrlj8F9rjKnpXdTYdWpAv46NAFmWQsAkXu_E6bsYA9pmDK5XYdMAa7aFNr-FTurlPnPd9mj-xX2D_Ae0FnHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71955771</pqid></control><display><type>article</type><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><source>MEDLINE</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</creator><creatorcontrib>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</creatorcontrib><description>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b313761a</identifier><identifier>PMID: 15159786</identifier><language>eng</language><publisher>England</publisher><subject>Cell Physiological Phenomena ; Electric Impedance ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Models, Biological ; Spectrum Analysis - instrumentation</subject><ispartof>Lab on a chip, 2004-01, Vol.4 (3), p.241-251</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15159786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gawad, Shady</creatorcontrib><creatorcontrib>Cheung, Karen</creatorcontrib><creatorcontrib>Seger, Urban</creatorcontrib><creatorcontrib>Bertsch, Arnaud</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</description><subject>Cell Physiological Phenomena</subject><subject>Electric Impedance</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Models, Biological</subject><subject>Spectrum Analysis - instrumentation</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMorq6Cv0ByEi_VTNM2jTdZP2HBi55LmkzYSNvUJIvsv7fLrnqaZ4aHF-Yl5ALYDTAub1sOXFSgDsgJFIJnDGp5-MdSzMhpjJ-MQVlU9TGZQQmlFHV1QvSDww51Ck7TOG7BR-3HDXUDVbR3Ovhe6ZUb0FDb-W-qN8n3mDDc0bRCHzA5rTqqBkPHoPRu036IzmBQyU10Ro6s6iKe7-ecfDw9vi9esuXb8-vifplpXpUpA4nMiqIsDDJVc1tCLqCoTaGLGivbtkaKVgKfTrnMlaiYZbnRNmfSVKLmfE6udrlj8F9rjKnpXdTYdWpAv46NAFmWQsAkXu_E6bsYA9pmDK5XYdMAa7aFNr-FTurlPnPd9mj-xX2D_Ae0FnHH</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Gawad, Shady</creator><creator>Cheung, Karen</creator><creator>Seger, Urban</creator><creator>Bertsch, Arnaud</creator><creator>Renaud, Philippe</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</title><author>Gawad, Shady ; Cheung, Karen ; Seger, Urban ; Bertsch, Arnaud ; Renaud, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-19e0f7454de0a83f5127148d4c48e6fbbd97b91348d292a760f02dcf209d67833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cell Physiological Phenomena</topic><topic>Electric Impedance</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Models, Biological</topic><topic>Spectrum Analysis - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawad, Shady</creatorcontrib><creatorcontrib>Cheung, Karen</creatorcontrib><creatorcontrib>Seger, Urban</creatorcontrib><creatorcontrib>Bertsch, Arnaud</creatorcontrib><creatorcontrib>Renaud, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawad, Shady</au><au>Cheung, Karen</au><au>Seger, Urban</au><au>Bertsch, Arnaud</au><au>Renaud, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>4</volume><issue>3</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.</abstract><cop>England</cop><pmid>15159786</pmid><doi>10.1039/b313761a</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2004-01, Vol.4 (3), p.241-251 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_71955771 |
source | MEDLINE; Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cell Physiological Phenomena Electric Impedance Flow Cytometry - instrumentation Flow Cytometry - methods Models, Biological Spectrum Analysis - instrumentation |
title | Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20spectroscopy%20in%20a%20micromachined%20flow%20cytometer:%20theoretical%20and%20practical%20considerations&rft.jtitle=Lab%20on%20a%20chip&rft.au=Gawad,%20Shady&rft.date=2004-01-01&rft.volume=4&rft.issue=3&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b313761a&rft_dat=%3Cproquest_cross%3E71955771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71955771&rft_id=info:pmid/15159786&rfr_iscdi=true |