Harnessing microbially generated power on the seafloor

In many marine environments, a voltage gradient exists across the water–sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2002-08, Vol.20 (8), p.821-825
Hauptverfasser: Tender, Leonard M., Reimers, Clare E., Stecher, Hilmar A., Holmes, Dawn E., Bond, Daniel R., Lowy, Daniel A., Pilobello, Kanoelani, Fertig, Stephanie J., Lovley, Derek R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 8
container_start_page 821
container_title Nature biotechnology
container_volume 20
creator Tender, Leonard M.
Reimers, Clare E.
Stecher, Hilmar A.
Holmes, Dawn E.
Bond, Daniel R.
Lowy, Daniel A.
Pilobello, Kanoelani
Fertig, Stephanie J.
Lovley, Derek R.
description In many marine environments, a voltage gradient exists across the water–sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ . Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.
doi_str_mv 10.1038/nbt716
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71953647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190114623</galeid><sourcerecordid>A190114623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-d73cc0e6e818da9c635e6904298bec8d47a07050965017e32e8d0d82a7b4a363</originalsourceid><addsrcrecordid>eNqN0VFr1TAUAOAgiptTf4IUQWUPnSdNe5I8jqFuMBhsw9eQpqe1oze5Ji1z_97ILVy2F5c8JCTfyeHkMPaewwkHob76dpYcX7BD3tRYctT4Mu9ByRJ4gwfsTUp3AIA14mt2wCvQXHM8ZHhuo6eURj8Um9HF0I52mh6KgTxFO1NXbMM9xSL4Yv5FRSLbTyHEt-xVb6dE79b1iN1-_3Z7dl5eXv24ODu9LB1CM5edFM4BISmuOqsdioZQQ11p1ZJTXS0tSGhAYwNckqhIddCpysq2tgLFEfu8e3Ybw--F0mw2Y3I0TdZTWJKRXDcCa_lfyFWtclbI8OMTeBeW6HMNpspDYiN1Ric7NNiJzOj7MEfr8uwo_1Hw1I_5_JRr4LzGSuSA40cB2cz0Zx7skpK5uLl-vr36-diuZeXGpBSpN9s4bmx8MBzMv76bXd8z_LCWtbQb6vZsbXQGn1Zgk7NTH613Y9o7oaSCimf3ZedSvvIDxf3_PEn5F3n8vbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222276579</pqid></control><display><type>article</type><title>Harnessing microbially generated power on the seafloor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Tender, Leonard M. ; Reimers, Clare E. ; Stecher, Hilmar A. ; Holmes, Dawn E. ; Bond, Daniel R. ; Lowy, Daniel A. ; Pilobello, Kanoelani ; Fertig, Stephanie J. ; Lovley, Derek R.</creator><creatorcontrib>Tender, Leonard M. ; Reimers, Clare E. ; Stecher, Hilmar A. ; Holmes, Dawn E. ; Bond, Daniel R. ; Lowy, Daniel A. ; Pilobello, Kanoelani ; Fertig, Stephanie J. ; Lovley, Derek R.</creatorcontrib><description>In many marine environments, a voltage gradient exists across the water–sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ . Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt716</identifier><identifier>PMID: 12091916</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Agriculture ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Bioelectric Energy Sources - microbiology ; Bioinformatics ; Biological and medical sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Biotechnology - methods ; Carbon ; Carbon - metabolism ; Chemical analysis ; Conservation of Energy Resources - methods ; DNA, Ribosomal - analysis ; DNA, Ribosomal - genetics ; Electric power ; Electricity ; Electrodes ; Energy ; Environmental Microbiology ; Estuaries ; Fuel cells ; Fuel technology ; Fundamental and applied biological sciences. Psychology ; Geologic Sediments - microbiology ; Graphite ; Industrial applications and implications. Economical aspects ; Life Sciences ; Marine environment ; Marine sediments ; Microbial activity ; Microorganisms ; Miscellaneous ; Molecular Sequence Data ; New Jersey ; Ocean floor ; Oceans and Seas ; Oregon ; Organic carbon ; Oxidation ; Oxidation-Reduction ; Plankton ; Renewable energy ; Reservoirs ; RNA, Bacterial - analysis ; RNA, Bacterial - genetics ; RNA, Ribosomal, 16S - genetics ; Salt marshes ; Seawater ; Sediment-water interface ; Sedimentation &amp; deposition ; Sediments ; Sulfides ; Sulfides - metabolism ; Water analysis</subject><ispartof>Nature biotechnology, 2002-08, Vol.20 (8), p.821-825</ispartof><rights>Springer Nature Limited 2002</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-d73cc0e6e818da9c635e6904298bec8d47a07050965017e32e8d0d82a7b4a363</citedby><cites>FETCH-LOGICAL-c605t-d73cc0e6e818da9c635e6904298bec8d47a07050965017e32e8d0d82a7b4a363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt716$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt716$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13878021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12091916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Reimers, Clare E.</creatorcontrib><creatorcontrib>Stecher, Hilmar A.</creatorcontrib><creatorcontrib>Holmes, Dawn E.</creatorcontrib><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Lowy, Daniel A.</creatorcontrib><creatorcontrib>Pilobello, Kanoelani</creatorcontrib><creatorcontrib>Fertig, Stephanie J.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><title>Harnessing microbially generated power on the seafloor</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>In many marine environments, a voltage gradient exists across the water–sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ . Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.</description><subject>Agriculture</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Chemical analysis</subject><subject>Conservation of Energy Resources - methods</subject><subject>DNA, Ribosomal - analysis</subject><subject>DNA, Ribosomal - genetics</subject><subject>Electric power</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Environmental Microbiology</subject><subject>Estuaries</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geologic Sediments - microbiology</subject><subject>Graphite</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Marine sediments</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>New Jersey</subject><subject>Ocean floor</subject><subject>Oceans and Seas</subject><subject>Oregon</subject><subject>Organic carbon</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Plankton</subject><subject>Renewable energy</subject><subject>Reservoirs</subject><subject>RNA, Bacterial - analysis</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Salt marshes</subject><subject>Seawater</subject><subject>Sediment-water interface</subject><subject>Sedimentation &amp; deposition</subject><subject>Sediments</subject><subject>Sulfides</subject><subject>Sulfides - metabolism</subject><subject>Water analysis</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0VFr1TAUAOAgiptTf4IUQWUPnSdNe5I8jqFuMBhsw9eQpqe1oze5Ji1z_97ILVy2F5c8JCTfyeHkMPaewwkHob76dpYcX7BD3tRYctT4Mu9ByRJ4gwfsTUp3AIA14mt2wCvQXHM8ZHhuo6eURj8Um9HF0I52mh6KgTxFO1NXbMM9xSL4Yv5FRSLbTyHEt-xVb6dE79b1iN1-_3Z7dl5eXv24ODu9LB1CM5edFM4BISmuOqsdioZQQ11p1ZJTXS0tSGhAYwNckqhIddCpysq2tgLFEfu8e3Ybw--F0mw2Y3I0TdZTWJKRXDcCa_lfyFWtclbI8OMTeBeW6HMNpspDYiN1Ric7NNiJzOj7MEfr8uwo_1Hw1I_5_JRr4LzGSuSA40cB2cz0Zx7skpK5uLl-vr36-diuZeXGpBSpN9s4bmx8MBzMv76bXd8z_LCWtbQb6vZsbXQGn1Zgk7NTH613Y9o7oaSCimf3ZedSvvIDxf3_PEn5F3n8vbM</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Tender, Leonard M.</creator><creator>Reimers, Clare E.</creator><creator>Stecher, Hilmar A.</creator><creator>Holmes, Dawn E.</creator><creator>Bond, Daniel R.</creator><creator>Lowy, Daniel A.</creator><creator>Pilobello, Kanoelani</creator><creator>Fertig, Stephanie J.</creator><creator>Lovley, Derek R.</creator><general>Nature Publishing Group UK</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>Harnessing microbially generated power on the seafloor</title><author>Tender, Leonard M. ; Reimers, Clare E. ; Stecher, Hilmar A. ; Holmes, Dawn E. ; Bond, Daniel R. ; Lowy, Daniel A. ; Pilobello, Kanoelani ; Fertig, Stephanie J. ; Lovley, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-d73cc0e6e818da9c635e6904298bec8d47a07050965017e32e8d0d82a7b4a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agriculture</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Chemical analysis</topic><topic>Conservation of Energy Resources - methods</topic><topic>DNA, Ribosomal - analysis</topic><topic>DNA, Ribosomal - genetics</topic><topic>Electric power</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Environmental Microbiology</topic><topic>Estuaries</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geologic Sediments - microbiology</topic><topic>Graphite</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Marine sediments</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>New Jersey</topic><topic>Ocean floor</topic><topic>Oceans and Seas</topic><topic>Oregon</topic><topic>Organic carbon</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Plankton</topic><topic>Renewable energy</topic><topic>Reservoirs</topic><topic>RNA, Bacterial - analysis</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Salt marshes</topic><topic>Seawater</topic><topic>Sediment-water interface</topic><topic>Sedimentation &amp; deposition</topic><topic>Sediments</topic><topic>Sulfides</topic><topic>Sulfides - metabolism</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Reimers, Clare E.</creatorcontrib><creatorcontrib>Stecher, Hilmar A.</creatorcontrib><creatorcontrib>Holmes, Dawn E.</creatorcontrib><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Lowy, Daniel A.</creatorcontrib><creatorcontrib>Pilobello, Kanoelani</creatorcontrib><creatorcontrib>Fertig, Stephanie J.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tender, Leonard M.</au><au>Reimers, Clare E.</au><au>Stecher, Hilmar A.</au><au>Holmes, Dawn E.</au><au>Bond, Daniel R.</au><au>Lowy, Daniel A.</au><au>Pilobello, Kanoelani</au><au>Fertig, Stephanie J.</au><au>Lovley, Derek R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing microbially generated power on the seafloor</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>20</volume><issue>8</issue><spage>821</spage><epage>825</epage><pages>821-825</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>In many marine environments, a voltage gradient exists across the water–sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ . Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12091916</pmid><doi>10.1038/nbt716</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2002-08, Vol.20 (8), p.821-825
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_71953647
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects Agriculture
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Bioelectric Energy Sources - microbiology
Bioinformatics
Biological and medical sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Biotechnology - methods
Carbon
Carbon - metabolism
Chemical analysis
Conservation of Energy Resources - methods
DNA, Ribosomal - analysis
DNA, Ribosomal - genetics
Electric power
Electricity
Electrodes
Energy
Environmental Microbiology
Estuaries
Fuel cells
Fuel technology
Fundamental and applied biological sciences. Psychology
Geologic Sediments - microbiology
Graphite
Industrial applications and implications. Economical aspects
Life Sciences
Marine environment
Marine sediments
Microbial activity
Microorganisms
Miscellaneous
Molecular Sequence Data
New Jersey
Ocean floor
Oceans and Seas
Oregon
Organic carbon
Oxidation
Oxidation-Reduction
Plankton
Renewable energy
Reservoirs
RNA, Bacterial - analysis
RNA, Bacterial - genetics
RNA, Ribosomal, 16S - genetics
Salt marshes
Seawater
Sediment-water interface
Sedimentation & deposition
Sediments
Sulfides
Sulfides - metabolism
Water analysis
title Harnessing microbially generated power on the seafloor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20microbially%20generated%20power%20on%20the%20seafloor&rft.jtitle=Nature%20biotechnology&rft.au=Tender,%20Leonard%20M.&rft.date=2002-08-01&rft.volume=20&rft.issue=8&rft.spage=821&rft.epage=825&rft.pages=821-825&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt716&rft_dat=%3Cgale_proqu%3EA190114623%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222276579&rft_id=info:pmid/12091916&rft_galeid=A190114623&rfr_iscdi=true