Growing genetic regulatory networks from seed genes

Motivation: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2004-05, Vol.20 (8), p.1241-1247
Hauptverfasser: Hashimoto, Ronaldo F., Kim, Seungchan, Shmulevich, Ilya, Zhang, Wei, Bittner, Michael L., Dougherty, Edward R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 8
container_start_page 1241
container_title Bioinformatics
container_volume 20
creator Hashimoto, Ronaldo F.
Kim, Seungchan
Shmulevich, Ilya
Zhang, Wei
Bittner, Michael L.
Dougherty, Edward R.
description Motivation: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. Results: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. Availability: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm
doi_str_mv 10.1093/bioinformatics/bth074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71952448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>643837951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-8ee2de351cd6adaf578911509dbcd1a8230538d481de441fb9326c1d2ce838053</originalsourceid><addsrcrecordid>eNqF0F9L3jAUBvAgk_ln-wiOMtjuOnOapEkuRZxKBW90jN2ENDl9V20bTVrUb7_o-6JsN7tKyPM7B_IQcgD0G1DNDts-9FMX4mjn3qXDdv5NJd8iu8BrWlZU6Hf5zmpZckXZDtlL6YZSAZzz92QHuJKgarFL2GkMD_20KlY4Yd5URFwtg51DfCryw0OIt6noYhiLhOhfVPpAtjs7JPy4OffJ9feTq-Oz8uLy9Pz46KJ0gsq5VIiVRybA-dp62wmpNICg2rfOg1UVo4IpzxV45By6VrOqduArh4qpnO2Tr-u9dzHcL5hmM_bJ4TDYCcOSjAQtKs7VfyFIrSqt6gw__wNvwhKn_AkDOa-51iwjsUYuhpQiduYu9qONTwaoee7e_N29WXef5z5tli_tiP5talN2Bl82wCZnhy7ayfXpzQmlNOcyu3Lt-jTj42tu462pJZPCnP38ZRrV0OYHbUzD_gDG4aBz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198664993</pqid></control><display><type>article</type><title>Growing genetic regulatory networks from seed genes</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hashimoto, Ronaldo F. ; Kim, Seungchan ; Shmulevich, Ilya ; Zhang, Wei ; Bittner, Michael L. ; Dougherty, Edward R.</creator><creatorcontrib>Hashimoto, Ronaldo F. ; Kim, Seungchan ; Shmulevich, Ilya ; Zhang, Wei ; Bittner, Michael L. ; Dougherty, Edward R.</creatorcontrib><description>Motivation: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. Results: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. Availability: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bth074</identifier><identifier>PMID: 14871865</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Animals ; Biological and medical sciences ; Computer Simulation ; Evolution, Molecular ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; Gene Expression Regulation - physiology ; General aspects ; Genetic Variation ; Glioma - genetics ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Melanoma - genetics ; Models, Genetic ; Models, Statistical ; Signal Transduction - genetics ; Transcription, Genetic - genetics</subject><ispartof>Bioinformatics, 2004-05, Vol.20 (8), p.1241-1247</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) May 22, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-8ee2de351cd6adaf578911509dbcd1a8230538d481de441fb9326c1d2ce838053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15889447$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14871865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashimoto, Ronaldo F.</creatorcontrib><creatorcontrib>Kim, Seungchan</creatorcontrib><creatorcontrib>Shmulevich, Ilya</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Bittner, Michael L.</creatorcontrib><creatorcontrib>Dougherty, Edward R.</creatorcontrib><title>Growing genetic regulatory networks from seed genes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. Results: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. Availability: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Evolution, Molecular</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - physiology</subject><subject>General aspects</subject><subject>Genetic Variation</subject><subject>Glioma - genetics</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Melanoma - genetics</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Signal Transduction - genetics</subject><subject>Transcription, Genetic - genetics</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0F9L3jAUBvAgk_ln-wiOMtjuOnOapEkuRZxKBW90jN2ENDl9V20bTVrUb7_o-6JsN7tKyPM7B_IQcgD0G1DNDts-9FMX4mjn3qXDdv5NJd8iu8BrWlZU6Hf5zmpZckXZDtlL6YZSAZzz92QHuJKgarFL2GkMD_20KlY4Yd5URFwtg51DfCryw0OIt6noYhiLhOhfVPpAtjs7JPy4OffJ9feTq-Oz8uLy9Pz46KJ0gsq5VIiVRybA-dp62wmpNICg2rfOg1UVo4IpzxV45By6VrOqduArh4qpnO2Tr-u9dzHcL5hmM_bJ4TDYCcOSjAQtKs7VfyFIrSqt6gw__wNvwhKn_AkDOa-51iwjsUYuhpQiduYu9qONTwaoee7e_N29WXef5z5tli_tiP5talN2Bl82wCZnhy7ayfXpzQmlNOcyu3Lt-jTj42tu462pJZPCnP38ZRrV0OYHbUzD_gDG4aBz</recordid><startdate>20040522</startdate><enddate>20040522</enddate><creator>Hashimoto, Ronaldo F.</creator><creator>Kim, Seungchan</creator><creator>Shmulevich, Ilya</creator><creator>Zhang, Wei</creator><creator>Bittner, Michael L.</creator><creator>Dougherty, Edward R.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040522</creationdate><title>Growing genetic regulatory networks from seed genes</title><author>Hashimoto, Ronaldo F. ; Kim, Seungchan ; Shmulevich, Ilya ; Zhang, Wei ; Bittner, Michael L. ; Dougherty, Edward R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-8ee2de351cd6adaf578911509dbcd1a8230538d481de441fb9326c1d2ce838053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Evolution, Molecular</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - physiology</topic><topic>General aspects</topic><topic>Genetic Variation</topic><topic>Glioma - genetics</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Melanoma - genetics</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Signal Transduction - genetics</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Ronaldo F.</creatorcontrib><creatorcontrib>Kim, Seungchan</creatorcontrib><creatorcontrib>Shmulevich, Ilya</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Bittner, Michael L.</creatorcontrib><creatorcontrib>Dougherty, Edward R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Ronaldo F.</au><au>Kim, Seungchan</au><au>Shmulevich, Ilya</au><au>Zhang, Wei</au><au>Bittner, Michael L.</au><au>Dougherty, Edward R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growing genetic regulatory networks from seed genes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2004-05-22</date><risdate>2004</risdate><volume>20</volume><issue>8</issue><spage>1241</spage><epage>1247</epage><pages>1241-1247</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: A number of models have been proposed for genetic regulatory networks. In principle, a network may contain any number of genes, so long as data are available to make inferences about their relationships. Nevertheless, there are two important reasons why the size of a constructed network should be limited. Computationally and mathematically, it is more feasible to model and simulate a network with a small number of genes. In addition, it is more likely that a small set of genes maintains a specific core regulatory mechanism. Results: Subnetworks are constructed in the context of a directed graph by beginning with a seed consisting of one or more genes believed to participate in a viable subnetwork. Functionalities and regulatory relationships among seed genes may be partially known or they may simply be of interest. Given the seed, we iteratively adjoin new genes in a manner that enhances subnetwork autonomy. The algorithm is applied using both the coefficient of determination and the Boolean-function influence among genes, and it is illustrated using a glioma gene-expression dataset. Availability: Software for the seed-growing algorithm will be available at the website for Probabilistic Boolean Networks: http://www2.mdanderson.org/app/ilya/PBN/PBN.htm</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>14871865</pmid><doi>10.1093/bioinformatics/bth074</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2004-05, Vol.20 (8), p.1241-1247
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_71952448
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Animals
Biological and medical sciences
Computer Simulation
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
Gene Expression Regulation - physiology
General aspects
Genetic Variation
Glioma - genetics
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Melanoma - genetics
Models, Genetic
Models, Statistical
Signal Transduction - genetics
Transcription, Genetic - genetics
title Growing genetic regulatory networks from seed genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growing%20genetic%20regulatory%20networks%20from%20seed%20genes&rft.jtitle=Bioinformatics&rft.au=Hashimoto,%20Ronaldo%20F.&rft.date=2004-05-22&rft.volume=20&rft.issue=8&rft.spage=1241&rft.epage=1247&rft.pages=1241-1247&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bth074&rft_dat=%3Cproquest_cross%3E643837951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198664993&rft_id=info:pmid/14871865&rfr_iscdi=true