Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing

Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti‐CD45RB antibody, MB2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunology 2002-08, Vol.14 (8), p.953-962
Hauptverfasser: Sutherland, Robyn M., McKenzie, Brent S., Zhan, Yifan, Corbett, Alexandra J., Fox‐Marsh, Annette, Georgiou, Harry M., Harrison, Leonard C., Lew, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 8
container_start_page 953
container_title International immunology
container_volume 14
creator Sutherland, Robyn M.
McKenzie, Brent S.
Zhan, Yifan
Corbett, Alexandra J.
Fox‐Marsh, Annette
Georgiou, Harry M.
Harrison, Leonard C.
Lew, Andrew M.
description Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti‐CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both Th1 and Th2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti‐CD45RB antibody with co‐stimulation blockade. The primary effect of anti‐CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti‐CD45RB treatment led to reduced expression of LFA‐1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA‐1 may enhance co‐stimulation, and both LFA‐1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti‐CD45RB antibody is due to effects on both T cell priming and trafficking.
doi_str_mv 10.1093/intimm/dxf063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71951678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71951678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3cdeb3473d3cd7df8c356a616864125a8869909411b01c52362ab20b4c26a3c33</originalsourceid><addsrcrecordid>eNqFkctO3DAUhi3UCgbKstvK6oJdiu0T35Z0aAEJqRKi5bKxHNuhmU5isBNpZtdH6DP2SUg0oyKx6crn6Hz-ZJ8fofeUfKJEw3HT9U3bHvtVTQTsoBktBSkYSPkGzYjmUCgq1R7az3lBCAGmYRftUUZLKYDN0N3JeP_v7z_z05JffcZ27Kro19iHPqSMV6GLD8nWPU5hEVzfxA5Xa9xGPyxt33QP-Bq7sFzix9S0U2s7j3_GqXyH3tZ2mcPh9jxA379-uZ6fF5ffzi7mJ5eFKzn0BTgfKigl-LGSvlYOuLCCCiVKyrhVSmhNdElpRajjDASzFSNV6Ziw4AAO0NHG-5ji0xByb9omT2-yXYhDNpJqToVU_wWp4loILUfw4ytwEYfUjZ8wo4sAaD7Zig3kUsw5hdpMK7BpbSgxUzJmk4zZJDPyH7bSoWqDf6G3UbwIm9yH1b-5Tb-MkCC5Ob-9N_JGKylvfhgFzw8emg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195033958</pqid></control><display><type>article</type><title>Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sutherland, Robyn M. ; McKenzie, Brent S. ; Zhan, Yifan ; Corbett, Alexandra J. ; Fox‐Marsh, Annette ; Georgiou, Harry M. ; Harrison, Leonard C. ; Lew, Andrew M.</creator><creatorcontrib>Sutherland, Robyn M. ; McKenzie, Brent S. ; Zhan, Yifan ; Corbett, Alexandra J. ; Fox‐Marsh, Annette ; Georgiou, Harry M. ; Harrison, Leonard C. ; Lew, Andrew M.</creatorcontrib><description>Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti‐CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both Th1 and Th2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti‐CD45RB antibody with co‐stimulation blockade. The primary effect of anti‐CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti‐CD45RB treatment led to reduced expression of LFA‐1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA‐1 may enhance co‐stimulation, and both LFA‐1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti‐CD45RB antibody is due to effects on both T cell priming and trafficking.</description><identifier>ISSN: 0953-8178</identifier><identifier>ISSN: 1460-2377</identifier><identifier>EISSN: 1460-2377</identifier><identifier>DOI: 10.1093/intimm/dxf063</identifier><identifier>PMID: 12147632</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Abatacept ; adhesion molecules ; Animals ; Antibodies, Monoclonal - pharmacology ; Antigens, CD ; Antigens, Differentiation - genetics ; Antigens, Differentiation - metabolism ; CD4 Lymphocyte Count ; CTLA-4 Antigen ; cytokines ; Cytokines - biosynthesis ; diabetes ; Diabetes Mellitus, Type 1 - surgery ; Fetal Tissue Transplantation - adverse effects ; Fetal Tissue Transplantation - immunology ; Fetal Tissue Transplantation - pathology ; Graft Rejection - immunology ; Graft Rejection - prevention &amp; control ; Graft Survival ; Humans ; Immunoconjugates ; Inflammation - pathology ; Inflammation - prevention &amp; control ; Islets of Langerhans Transplantation - adverse effects ; Islets of Langerhans Transplantation - immunology ; Islets of Langerhans Transplantation - pathology ; L-Selectin - metabolism ; Leukocyte Common Antigens - immunology ; Lymphocyte Function-Associated Antigen-1 - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Mutant Strains ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Sus scrofa ; T-Lymphocytes - immunology ; Th1/Th2 cells ; transplantation ; Transplantation, Heterologous</subject><ispartof>International immunology, 2002-08, Vol.14 (8), p.953-962</ispartof><rights>Copyright Oxford University Press(England) Aug 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-3cdeb3473d3cd7df8c356a616864125a8869909411b01c52362ab20b4c26a3c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12147632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutherland, Robyn M.</creatorcontrib><creatorcontrib>McKenzie, Brent S.</creatorcontrib><creatorcontrib>Zhan, Yifan</creatorcontrib><creatorcontrib>Corbett, Alexandra J.</creatorcontrib><creatorcontrib>Fox‐Marsh, Annette</creatorcontrib><creatorcontrib>Georgiou, Harry M.</creatorcontrib><creatorcontrib>Harrison, Leonard C.</creatorcontrib><creatorcontrib>Lew, Andrew M.</creatorcontrib><title>Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing</title><title>International immunology</title><addtitle>Int. Immunol</addtitle><description>Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti‐CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both Th1 and Th2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti‐CD45RB antibody with co‐stimulation blockade. The primary effect of anti‐CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti‐CD45RB treatment led to reduced expression of LFA‐1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA‐1 may enhance co‐stimulation, and both LFA‐1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti‐CD45RB antibody is due to effects on both T cell priming and trafficking.</description><subject>Abatacept</subject><subject>adhesion molecules</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antigens, CD</subject><subject>Antigens, Differentiation - genetics</subject><subject>Antigens, Differentiation - metabolism</subject><subject>CD4 Lymphocyte Count</subject><subject>CTLA-4 Antigen</subject><subject>cytokines</subject><subject>Cytokines - biosynthesis</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Type 1 - surgery</subject><subject>Fetal Tissue Transplantation - adverse effects</subject><subject>Fetal Tissue Transplantation - immunology</subject><subject>Fetal Tissue Transplantation - pathology</subject><subject>Graft Rejection - immunology</subject><subject>Graft Rejection - prevention &amp; control</subject><subject>Graft Survival</subject><subject>Humans</subject><subject>Immunoconjugates</subject><subject>Inflammation - pathology</subject><subject>Inflammation - prevention &amp; control</subject><subject>Islets of Langerhans Transplantation - adverse effects</subject><subject>Islets of Langerhans Transplantation - immunology</subject><subject>Islets of Langerhans Transplantation - pathology</subject><subject>L-Selectin - metabolism</subject><subject>Leukocyte Common Antigens - immunology</subject><subject>Lymphocyte Function-Associated Antigen-1 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1</subject><subject>Sus scrofa</subject><subject>T-Lymphocytes - immunology</subject><subject>Th1/Th2 cells</subject><subject>transplantation</subject><subject>Transplantation, Heterologous</subject><issn>0953-8178</issn><issn>1460-2377</issn><issn>1460-2377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhi3UCgbKstvK6oJdiu0T35Z0aAEJqRKi5bKxHNuhmU5isBNpZtdH6DP2SUg0oyKx6crn6Hz-ZJ8fofeUfKJEw3HT9U3bHvtVTQTsoBktBSkYSPkGzYjmUCgq1R7az3lBCAGmYRftUUZLKYDN0N3JeP_v7z_z05JffcZ27Kro19iHPqSMV6GLD8nWPU5hEVzfxA5Xa9xGPyxt33QP-Bq7sFzix9S0U2s7j3_GqXyH3tZ2mcPh9jxA379-uZ6fF5ffzi7mJ5eFKzn0BTgfKigl-LGSvlYOuLCCCiVKyrhVSmhNdElpRajjDASzFSNV6Ziw4AAO0NHG-5ji0xByb9omT2-yXYhDNpJqToVU_wWp4loILUfw4ytwEYfUjZ8wo4sAaD7Zig3kUsw5hdpMK7BpbSgxUzJmk4zZJDPyH7bSoWqDf6G3UbwIm9yH1b-5Tb-MkCC5Ob-9N_JGKylvfhgFzw8emg0</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Sutherland, Robyn M.</creator><creator>McKenzie, Brent S.</creator><creator>Zhan, Yifan</creator><creator>Corbett, Alexandra J.</creator><creator>Fox‐Marsh, Annette</creator><creator>Georgiou, Harry M.</creator><creator>Harrison, Leonard C.</creator><creator>Lew, Andrew M.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing</title><author>Sutherland, Robyn M. ; McKenzie, Brent S. ; Zhan, Yifan ; Corbett, Alexandra J. ; Fox‐Marsh, Annette ; Georgiou, Harry M. ; Harrison, Leonard C. ; Lew, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3cdeb3473d3cd7df8c356a616864125a8869909411b01c52362ab20b4c26a3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Abatacept</topic><topic>adhesion molecules</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antigens, CD</topic><topic>Antigens, Differentiation - genetics</topic><topic>Antigens, Differentiation - metabolism</topic><topic>CD4 Lymphocyte Count</topic><topic>CTLA-4 Antigen</topic><topic>cytokines</topic><topic>Cytokines - biosynthesis</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Type 1 - surgery</topic><topic>Fetal Tissue Transplantation - adverse effects</topic><topic>Fetal Tissue Transplantation - immunology</topic><topic>Fetal Tissue Transplantation - pathology</topic><topic>Graft Rejection - immunology</topic><topic>Graft Rejection - prevention &amp; control</topic><topic>Graft Survival</topic><topic>Humans</topic><topic>Immunoconjugates</topic><topic>Inflammation - pathology</topic><topic>Inflammation - prevention &amp; control</topic><topic>Islets of Langerhans Transplantation - adverse effects</topic><topic>Islets of Langerhans Transplantation - immunology</topic><topic>Islets of Langerhans Transplantation - pathology</topic><topic>L-Selectin - metabolism</topic><topic>Leukocyte Common Antigens - immunology</topic><topic>Lymphocyte Function-Associated Antigen-1 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1</topic><topic>Sus scrofa</topic><topic>T-Lymphocytes - immunology</topic><topic>Th1/Th2 cells</topic><topic>transplantation</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutherland, Robyn M.</creatorcontrib><creatorcontrib>McKenzie, Brent S.</creatorcontrib><creatorcontrib>Zhan, Yifan</creatorcontrib><creatorcontrib>Corbett, Alexandra J.</creatorcontrib><creatorcontrib>Fox‐Marsh, Annette</creatorcontrib><creatorcontrib>Georgiou, Harry M.</creatorcontrib><creatorcontrib>Harrison, Leonard C.</creatorcontrib><creatorcontrib>Lew, Andrew M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutherland, Robyn M.</au><au>McKenzie, Brent S.</au><au>Zhan, Yifan</au><au>Corbett, Alexandra J.</au><au>Fox‐Marsh, Annette</au><au>Georgiou, Harry M.</au><au>Harrison, Leonard C.</au><au>Lew, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing</atitle><jtitle>International immunology</jtitle><addtitle>Int. Immunol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>14</volume><issue>8</issue><spage>953</spage><epage>962</epage><pages>953-962</pages><issn>0953-8178</issn><issn>1460-2377</issn><eissn>1460-2377</eissn><abstract>Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti‐CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both Th1 and Th2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti‐CD45RB antibody with co‐stimulation blockade. The primary effect of anti‐CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti‐CD45RB treatment led to reduced expression of LFA‐1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA‐1 may enhance co‐stimulation, and both LFA‐1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti‐CD45RB antibody is due to effects on both T cell priming and trafficking.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12147632</pmid><doi>10.1093/intimm/dxf063</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8178
ispartof International immunology, 2002-08, Vol.14 (8), p.953-962
issn 0953-8178
1460-2377
1460-2377
language eng
recordid cdi_proquest_miscellaneous_71951678
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Abatacept
adhesion molecules
Animals
Antibodies, Monoclonal - pharmacology
Antigens, CD
Antigens, Differentiation - genetics
Antigens, Differentiation - metabolism
CD4 Lymphocyte Count
CTLA-4 Antigen
cytokines
Cytokines - biosynthesis
diabetes
Diabetes Mellitus, Type 1 - surgery
Fetal Tissue Transplantation - adverse effects
Fetal Tissue Transplantation - immunology
Fetal Tissue Transplantation - pathology
Graft Rejection - immunology
Graft Rejection - prevention & control
Graft Survival
Humans
Immunoconjugates
Inflammation - pathology
Inflammation - prevention & control
Islets of Langerhans Transplantation - adverse effects
Islets of Langerhans Transplantation - immunology
Islets of Langerhans Transplantation - pathology
L-Selectin - metabolism
Leukocyte Common Antigens - immunology
Lymphocyte Function-Associated Antigen-1 - metabolism
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Knockout
Mice, Mutant Strains
Protein Tyrosine Phosphatase, Non-Receptor Type 1
Sus scrofa
T-Lymphocytes - immunology
Th1/Th2 cells
transplantation
Transplantation, Heterologous
title Anti‐CD45RB antibody deters xenograft rejection by modulating T cell priming and homing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti%E2%80%90CD45RB%20antibody%20deters%20xenograft%20rejection%20by%20modulating%20T%20cell%20priming%20and%20homing&rft.jtitle=International%20immunology&rft.au=Sutherland,%20Robyn%20M.&rft.date=2002-08-01&rft.volume=14&rft.issue=8&rft.spage=953&rft.epage=962&rft.pages=953-962&rft.issn=0953-8178&rft.eissn=1460-2377&rft_id=info:doi/10.1093/intimm/dxf063&rft_dat=%3Cproquest_cross%3E71951678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195033958&rft_id=info:pmid/12147632&rfr_iscdi=true