Evaluation of analyses of univariate discrete twin data
Akiake's Information Criterion (AIC) is commonly used in univariate twin modeling of a discrete trait to prune a full model into a more parsimonious submodel. It is possible that this practice could introduce bias and inaccuracy, and we could identify no prior systematic study of these issues....
Gespeichert in:
Veröffentlicht in: | Behavior genetics 2002-05, Vol.32 (3), p.221-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 3 |
container_start_page | 221 |
container_title | Behavior genetics |
container_volume | 32 |
creator | Sullivan, Patrick F Eaves, Lindon J |
description | Akiake's Information Criterion (AIC) is commonly used in univariate twin modeling of a discrete trait to prune a full model into a more parsimonious submodel. It is possible that this practice could introduce bias and inaccuracy, and we could identify no prior systematic study of these issues. Thus, we used simulation to investigate the performance of AIC-guided modeling across a broad range of parameters. Our simulations indicated that the use of the AIC to determine the "best" univariate model for a discrete trait tended to yield the incorrect model rather frequently. Moreover the parameter estimates of the "best" model by AIC were biased sharply upward as were the associated 95% confidence intervals. These results suggest that the use of AIC to guide twin modeling for univariate discrete traits should either be abandoned or used with great caution. |
doi_str_mv | 10.1023/A:1016025229858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71943927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71943927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-986c85f9089c64fe43e43ac01763da74a1896714b33d1f65453c55f689e95f263</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK2evUnw4C26M_vtrZT6AQUveg7TZBdS0qRmk4r_vSvWixdhYN7Aj8e8x9gl8FvgKO7m98BBc1SIzip7xKagjMgFOnPMppxzyC1KOWFnMW7SiVqqUzYBBAnGiikzyz01Iw1112ZdyKil5jP6-K3Htt5TX9Pgs6qOZe-TGD7qNqtooHN2EqiJ_uKwZ-ztYfm6eMpXL4_Pi_kqLwXAkDurS6uC49aVWgYvRRoqORgtKjKSwDptQK6FqCBoJZUolQraOu9UQC1m7ObHd9d376OPQ7FNv_imodZ3YywMOCkcmn9BsFKhc5jA6z_gphv7lDsWqUQOgIon6OoAjeutr4pdX2-p_yx-ixNf9UFsmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229011250</pqid></control><display><type>article</type><title>Evaluation of analyses of univariate discrete twin data</title><source>MEDLINE</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sullivan, Patrick F ; Eaves, Lindon J</creator><creatorcontrib>Sullivan, Patrick F ; Eaves, Lindon J</creatorcontrib><description>Akiake's Information Criterion (AIC) is commonly used in univariate twin modeling of a discrete trait to prune a full model into a more parsimonious submodel. It is possible that this practice could introduce bias and inaccuracy, and we could identify no prior systematic study of these issues. Thus, we used simulation to investigate the performance of AIC-guided modeling across a broad range of parameters. Our simulations indicated that the use of the AIC to determine the "best" univariate model for a discrete trait tended to yield the incorrect model rather frequently. Moreover the parameter estimates of the "best" model by AIC were biased sharply upward as were the associated 95% confidence intervals. These results suggest that the use of AIC to guide twin modeling for univariate discrete traits should either be abandoned or used with great caution.</description><identifier>ISSN: 0001-8244</identifier><identifier>EISSN: 1573-3297</identifier><identifier>DOI: 10.1023/A:1016025229858</identifier><identifier>PMID: 12141783</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Bias ; Humans ; Models, Genetic ; Models, Statistical ; Phenotype ; Twins - genetics</subject><ispartof>Behavior genetics, 2002-05, Vol.32 (3), p.221-227</ispartof><rights>Plenum Publishing Corporation 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-986c85f9089c64fe43e43ac01763da74a1896714b33d1f65453c55f689e95f263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,12845,27923,27924,30998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12141783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Eaves, Lindon J</creatorcontrib><title>Evaluation of analyses of univariate discrete twin data</title><title>Behavior genetics</title><addtitle>Behav Genet</addtitle><description>Akiake's Information Criterion (AIC) is commonly used in univariate twin modeling of a discrete trait to prune a full model into a more parsimonious submodel. It is possible that this practice could introduce bias and inaccuracy, and we could identify no prior systematic study of these issues. Thus, we used simulation to investigate the performance of AIC-guided modeling across a broad range of parameters. Our simulations indicated that the use of the AIC to determine the "best" univariate model for a discrete trait tended to yield the incorrect model rather frequently. Moreover the parameter estimates of the "best" model by AIC were biased sharply upward as were the associated 95% confidence intervals. These results suggest that the use of AIC to guide twin modeling for univariate discrete traits should either be abandoned or used with great caution.</description><subject>Bias</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Phenotype</subject><subject>Twins - genetics</subject><issn>0001-8244</issn><issn>1573-3297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM1Lw0AQxRdRbK2evUnw4C26M_vtrZT6AQUveg7TZBdS0qRmk4r_vSvWixdhYN7Aj8e8x9gl8FvgKO7m98BBc1SIzip7xKagjMgFOnPMppxzyC1KOWFnMW7SiVqqUzYBBAnGiikzyz01Iw1112ZdyKil5jP6-K3Htt5TX9Pgs6qOZe-TGD7qNqtooHN2EqiJ_uKwZ-ztYfm6eMpXL4_Pi_kqLwXAkDurS6uC49aVWgYvRRoqORgtKjKSwDptQK6FqCBoJZUolQraOu9UQC1m7ObHd9d376OPQ7FNv_imodZ3YywMOCkcmn9BsFKhc5jA6z_gphv7lDsWqUQOgIon6OoAjeutr4pdX2-p_yx-ixNf9UFsmA</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Sullivan, Patrick F</creator><creator>Eaves, Lindon J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QJ</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020501</creationdate><title>Evaluation of analyses of univariate discrete twin data</title><author>Sullivan, Patrick F ; Eaves, Lindon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-986c85f9089c64fe43e43ac01763da74a1896714b33d1f65453c55f689e95f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bias</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Phenotype</topic><topic>Twins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sullivan, Patrick F</creatorcontrib><creatorcontrib>Eaves, Lindon J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sullivan, Patrick F</au><au>Eaves, Lindon J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of analyses of univariate discrete twin data</atitle><jtitle>Behavior genetics</jtitle><addtitle>Behav Genet</addtitle><date>2002-05-01</date><risdate>2002</risdate><volume>32</volume><issue>3</issue><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>0001-8244</issn><eissn>1573-3297</eissn><abstract>Akiake's Information Criterion (AIC) is commonly used in univariate twin modeling of a discrete trait to prune a full model into a more parsimonious submodel. It is possible that this practice could introduce bias and inaccuracy, and we could identify no prior systematic study of these issues. Thus, we used simulation to investigate the performance of AIC-guided modeling across a broad range of parameters. Our simulations indicated that the use of the AIC to determine the "best" univariate model for a discrete trait tended to yield the incorrect model rather frequently. Moreover the parameter estimates of the "best" model by AIC were biased sharply upward as were the associated 95% confidence intervals. These results suggest that the use of AIC to guide twin modeling for univariate discrete traits should either be abandoned or used with great caution.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12141783</pmid><doi>10.1023/A:1016025229858</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8244 |
ispartof | Behavior genetics, 2002-05, Vol.32 (3), p.221-227 |
issn | 0001-8244 1573-3297 |
language | eng |
recordid | cdi_proquest_miscellaneous_71943927 |
source | MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA); SpringerLink Journals - AutoHoldings |
subjects | Bias Humans Models, Genetic Models, Statistical Phenotype Twins - genetics |
title | Evaluation of analyses of univariate discrete twin data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20analyses%20of%20univariate%20discrete%20twin%20data&rft.jtitle=Behavior%20genetics&rft.au=Sullivan,%20Patrick%20F&rft.date=2002-05-01&rft.volume=32&rft.issue=3&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=0001-8244&rft.eissn=1573-3297&rft_id=info:doi/10.1023/A:1016025229858&rft_dat=%3Cproquest_pubme%3E71943927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229011250&rft_id=info:pmid/12141783&rfr_iscdi=true |