Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers

Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2002-07, Vol.92 (2), p.67-76
Hauptverfasser: Cui, X.D, Zarate, X, Tomfohr, J, Primak, A, Moore, A.L, Moore, T.A, Gust, D, Harris, G, Sankey, O.F, Lindsay, S.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 2
container_start_page 67
container_title Ultramicroscopy
container_volume 92
creator Cui, X.D
Zarate, X
Tomfohr, J
Primak, A
Moore, A.L
Moore, T.A
Gust, D
Harris, G
Sankey, O.F
Lindsay, S.M
description Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.
doi_str_mv 10.1016/S0304-3991(02)00069-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71941646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399102000694</els_id><sourcerecordid>71941646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</originalsourceid><addsrcrecordid>eNqFkEtPAyEUhYnR2Fr9CZrZaHQxCjM8hpXRxlfSxIW6JpSBipmBCjMm_fcybWOXriCX73DPOQCcIniNIKI3b7CEOC85R5ewuIIQUp7jPTBGFeN5wYpyH4z_kBE4ivErQQji6hCMUIHKimM8BvW9lTG3ru6VrjPjg9Ixsy5Tfhh11i0y2fnWqs1blm7BR-WXq0y6esA6qbpMfcqwGGBvMh8W0iVB651v5EqHeAwOjGyiPtmeE_Dx-PA-fc5nr08v07tZrjDhXa40RYhDygrDKK0KRuZ1coWq5JoVjGpdYqXmkBCSptxIQ-ecyKo0KTSqSTkBF5t_l8F_9zp2orVR6aaRTvs-CoY4RhTTBJINOISJQRuxDLaVYSUQFEO9Yl2vGLoTsBDregVOurPtgn7e6nqn2vaZgPMtIKOSjQnSKRt3XMkIpXRwervhdKrjx-ogorLapbQ2aNWJ2tt_rPwCFeqXnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71941646</pqid></control><display><type>article</type><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</creator><creatorcontrib>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</creatorcontrib><description>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/S0304-3991(02)00069-4</identifier><identifier>PMID: 12138944</identifier><identifier>CODEN: ULTRD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic force microscopes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Contact resistance, contact potential ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Piezoelectric and electrostrictive constants ; Piezoelectricity and electromechanical effects ; Scanning probe microscopes, components and techniques</subject><ispartof>Ultramicroscopy, 2002-07, Vol.92 (2), p.67-76</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</citedby><cites>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3991(02)00069-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13756665$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12138944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, X.D</creatorcontrib><creatorcontrib>Zarate, X</creatorcontrib><creatorcontrib>Tomfohr, J</creatorcontrib><creatorcontrib>Primak, A</creatorcontrib><creatorcontrib>Moore, A.L</creatorcontrib><creatorcontrib>Moore, T.A</creatorcontrib><creatorcontrib>Gust, D</creatorcontrib><creatorcontrib>Harris, G</creatorcontrib><creatorcontrib>Sankey, O.F</creatorcontrib><creatorcontrib>Lindsay, S.M</creatorcontrib><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</description><subject>Atomic force microscopes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Contact resistance, contact potential</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Piezoelectric and electrostrictive constants</subject><subject>Piezoelectricity and electromechanical effects</subject><subject>Scanning probe microscopes, components and techniques</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEUhYnR2Fr9CZrZaHQxCjM8hpXRxlfSxIW6JpSBipmBCjMm_fcybWOXriCX73DPOQCcIniNIKI3b7CEOC85R5ewuIIQUp7jPTBGFeN5wYpyH4z_kBE4ivErQQji6hCMUIHKimM8BvW9lTG3ru6VrjPjg9Ixsy5Tfhh11i0y2fnWqs1blm7BR-WXq0y6esA6qbpMfcqwGGBvMh8W0iVB651v5EqHeAwOjGyiPtmeE_Dx-PA-fc5nr08v07tZrjDhXa40RYhDygrDKK0KRuZ1coWq5JoVjGpdYqXmkBCSptxIQ-ecyKo0KTSqSTkBF5t_l8F_9zp2orVR6aaRTvs-CoY4RhTTBJINOISJQRuxDLaVYSUQFEO9Yl2vGLoTsBDregVOurPtgn7e6nqn2vaZgPMtIKOSjQnSKRt3XMkIpXRwervhdKrjx-ogorLapbQ2aNWJ2tt_rPwCFeqXnA</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Cui, X.D</creator><creator>Zarate, X</creator><creator>Tomfohr, J</creator><creator>Primak, A</creator><creator>Moore, A.L</creator><creator>Moore, T.A</creator><creator>Gust, D</creator><creator>Harris, G</creator><creator>Sankey, O.F</creator><creator>Lindsay, S.M</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><author>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Atomic force microscopes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Contact resistance, contact potential</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Piezoelectric and electrostrictive constants</topic><topic>Piezoelectricity and electromechanical effects</topic><topic>Scanning probe microscopes, components and techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, X.D</creatorcontrib><creatorcontrib>Zarate, X</creatorcontrib><creatorcontrib>Tomfohr, J</creatorcontrib><creatorcontrib>Primak, A</creatorcontrib><creatorcontrib>Moore, A.L</creatorcontrib><creatorcontrib>Moore, T.A</creatorcontrib><creatorcontrib>Gust, D</creatorcontrib><creatorcontrib>Harris, G</creatorcontrib><creatorcontrib>Sankey, O.F</creatorcontrib><creatorcontrib>Lindsay, S.M</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, X.D</au><au>Zarate, X</au><au>Tomfohr, J</au><au>Primak, A</au><au>Moore, A.L</au><au>Moore, T.A</au><au>Gust, D</au><au>Harris, G</au><au>Sankey, O.F</au><au>Lindsay, S.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>92</volume><issue>2</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><coden>ULTRD6</coden><abstract>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12138944</pmid><doi>10.1016/S0304-3991(02)00069-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2002-07, Vol.92 (2), p.67-76
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_71941646
source Access via ScienceDirect (Elsevier)
subjects Atomic force microscopes
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Contact resistance, contact potential
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in interface structures
Exact sciences and technology
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Physics
Piezoelectric and electrostrictive constants
Piezoelectricity and electromechanical effects
Scanning probe microscopes, components and techniques
title Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias-induced%20forces%20in%20conducting%20atomic%20force%20microscopy%20and%20contact%20charging%20of%20organic%20monolayers&rft.jtitle=Ultramicroscopy&rft.au=Cui,%20X.D&rft.date=2002-07-01&rft.volume=92&rft.issue=2&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0304-3991&rft.eissn=1879-2723&rft.coden=ULTRD6&rft_id=info:doi/10.1016/S0304-3991(02)00069-4&rft_dat=%3Cproquest_cross%3E71941646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71941646&rft_id=info:pmid/12138944&rft_els_id=S0304399102000694&rfr_iscdi=true