Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers
Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate...
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2002-07, Vol.92 (2), p.67-76 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 2 |
container_start_page | 67 |
container_title | Ultramicroscopy |
container_volume | 92 |
creator | Cui, X.D Zarate, X Tomfohr, J Primak, A Moore, A.L Moore, T.A Gust, D Harris, G Sankey, O.F Lindsay, S.M |
description | Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging. |
doi_str_mv | 10.1016/S0304-3991(02)00069-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71941646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399102000694</els_id><sourcerecordid>71941646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</originalsourceid><addsrcrecordid>eNqFkEtPAyEUhYnR2Fr9CZrZaHQxCjM8hpXRxlfSxIW6JpSBipmBCjMm_fcybWOXriCX73DPOQCcIniNIKI3b7CEOC85R5ewuIIQUp7jPTBGFeN5wYpyH4z_kBE4ivErQQji6hCMUIHKimM8BvW9lTG3ru6VrjPjg9Ixsy5Tfhh11i0y2fnWqs1blm7BR-WXq0y6esA6qbpMfcqwGGBvMh8W0iVB651v5EqHeAwOjGyiPtmeE_Dx-PA-fc5nr08v07tZrjDhXa40RYhDygrDKK0KRuZ1coWq5JoVjGpdYqXmkBCSptxIQ-ecyKo0KTSqSTkBF5t_l8F_9zp2orVR6aaRTvs-CoY4RhTTBJINOISJQRuxDLaVYSUQFEO9Yl2vGLoTsBDregVOurPtgn7e6nqn2vaZgPMtIKOSjQnSKRt3XMkIpXRwervhdKrjx-ogorLapbQ2aNWJ2tt_rPwCFeqXnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71941646</pqid></control><display><type>article</type><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</creator><creatorcontrib>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</creatorcontrib><description>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/S0304-3991(02)00069-4</identifier><identifier>PMID: 12138944</identifier><identifier>CODEN: ULTRD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic force microscopes ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Contact resistance, contact potential ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Piezoelectric and electrostrictive constants ; Piezoelectricity and electromechanical effects ; Scanning probe microscopes, components and techniques</subject><ispartof>Ultramicroscopy, 2002-07, Vol.92 (2), p.67-76</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</citedby><cites>FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3991(02)00069-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13756665$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12138944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, X.D</creatorcontrib><creatorcontrib>Zarate, X</creatorcontrib><creatorcontrib>Tomfohr, J</creatorcontrib><creatorcontrib>Primak, A</creatorcontrib><creatorcontrib>Moore, A.L</creatorcontrib><creatorcontrib>Moore, T.A</creatorcontrib><creatorcontrib>Gust, D</creatorcontrib><creatorcontrib>Harris, G</creatorcontrib><creatorcontrib>Sankey, O.F</creatorcontrib><creatorcontrib>Lindsay, S.M</creatorcontrib><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</description><subject>Atomic force microscopes</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Contact resistance, contact potential</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Piezoelectric and electrostrictive constants</subject><subject>Piezoelectricity and electromechanical effects</subject><subject>Scanning probe microscopes, components and techniques</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEUhYnR2Fr9CZrZaHQxCjM8hpXRxlfSxIW6JpSBipmBCjMm_fcybWOXriCX73DPOQCcIniNIKI3b7CEOC85R5ewuIIQUp7jPTBGFeN5wYpyH4z_kBE4ivErQQji6hCMUIHKimM8BvW9lTG3ru6VrjPjg9Ixsy5Tfhh11i0y2fnWqs1blm7BR-WXq0y6esA6qbpMfcqwGGBvMh8W0iVB651v5EqHeAwOjGyiPtmeE_Dx-PA-fc5nr08v07tZrjDhXa40RYhDygrDKK0KRuZ1coWq5JoVjGpdYqXmkBCSptxIQ-ecyKo0KTSqSTkBF5t_l8F_9zp2orVR6aaRTvs-CoY4RhTTBJINOISJQRuxDLaVYSUQFEO9Yl2vGLoTsBDregVOurPtgn7e6nqn2vaZgPMtIKOSjQnSKRt3XMkIpXRwervhdKrjx-ogorLapbQ2aNWJ2tt_rPwCFeqXnA</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Cui, X.D</creator><creator>Zarate, X</creator><creator>Tomfohr, J</creator><creator>Primak, A</creator><creator>Moore, A.L</creator><creator>Moore, T.A</creator><creator>Gust, D</creator><creator>Harris, G</creator><creator>Sankey, O.F</creator><creator>Lindsay, S.M</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</title><author>Cui, X.D ; Zarate, X ; Tomfohr, J ; Primak, A ; Moore, A.L ; Moore, T.A ; Gust, D ; Harris, G ; Sankey, O.F ; Lindsay, S.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ce61190672f7668275bdced181047276ee34ccb0555ed19faf6b95a83f1871d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Atomic force microscopes</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Contact resistance, contact potential</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Piezoelectric and electrostrictive constants</topic><topic>Piezoelectricity and electromechanical effects</topic><topic>Scanning probe microscopes, components and techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, X.D</creatorcontrib><creatorcontrib>Zarate, X</creatorcontrib><creatorcontrib>Tomfohr, J</creatorcontrib><creatorcontrib>Primak, A</creatorcontrib><creatorcontrib>Moore, A.L</creatorcontrib><creatorcontrib>Moore, T.A</creatorcontrib><creatorcontrib>Gust, D</creatorcontrib><creatorcontrib>Harris, G</creatorcontrib><creatorcontrib>Sankey, O.F</creatorcontrib><creatorcontrib>Lindsay, S.M</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, X.D</au><au>Zarate, X</au><au>Tomfohr, J</au><au>Primak, A</au><au>Moore, A.L</au><au>Moore, T.A</au><au>Gust, D</au><au>Harris, G</au><au>Sankey, O.F</au><au>Lindsay, S.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>92</volume><issue>2</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><coden>ULTRD6</coden><abstract>Contact electrification, a surface property of bulk dielectric materials, has now been observed at the molecular scale using conducting atomic force microscopy (AFM). Conducting AFM measures the electrical properties of an organic film sandwiched between a conducting probe and a conducting substrate. This paper describes physical changes in the film caused by the application of a bias. Contact of the probe leads to direct mechanical stress and the applied electric field results in both Maxwell stresses and electrostriction. Additional forces arise from charge injection (contact charging). Electrostriction and contact charging act oppositely from the normal long-range Coulomb attraction and dominate when a charged tip touches an insulating film, causing the tip to deflect away from the film at high bias. A bias-induced repulsion observed in spin-coated PMMA films may be accounted for by either mechanism. In self-assembled monolayers, however, tunnel current signals show that the repulsion is dominated by contact charging.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12138944</pmid><doi>10.1016/S0304-3991(02)00069-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2002-07, Vol.92 (2), p.67-76 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_proquest_miscellaneous_71941646 |
source | Access via ScienceDirect (Elsevier) |
subjects | Atomic force microscopes Condensed matter: electronic structure, electrical, magnetic, and optical properties Contact resistance, contact potential Dielectrics, piezoelectrics, and ferroelectrics and their properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Exact sciences and technology Instruments, apparatus, components and techniques common to several branches of physics and astronomy Physics Piezoelectric and electrostrictive constants Piezoelectricity and electromechanical effects Scanning probe microscopes, components and techniques |
title | Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias-induced%20forces%20in%20conducting%20atomic%20force%20microscopy%20and%20contact%20charging%20of%20organic%20monolayers&rft.jtitle=Ultramicroscopy&rft.au=Cui,%20X.D&rft.date=2002-07-01&rft.volume=92&rft.issue=2&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0304-3991&rft.eissn=1879-2723&rft.coden=ULTRD6&rft_id=info:doi/10.1016/S0304-3991(02)00069-4&rft_dat=%3Cproquest_cross%3E71941646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71941646&rft_id=info:pmid/12138944&rft_els_id=S0304399102000694&rfr_iscdi=true |