[23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species

The chapter discusses techniques that can be used to study ascorbate-related redox reactions across cell membranes. First, the quantification of intra- and extracellular ascorbate species is discussed. Subsequently, the chapter presents methods to establish the proper intra- or extracellular concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 2002, Vol.352, p.268-279
Hauptverfasser: Vanduijn, Martun M., Van der Zee, Jolanda, Van den Broek, Peter J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 268
container_title Methods in Enzymology
container_volume 352
creator Vanduijn, Martun M.
Van der Zee, Jolanda
Van den Broek, Peter J.A.
description The chapter discusses techniques that can be used to study ascorbate-related redox reactions across cell membranes. First, the quantification of intra- and extracellular ascorbate species is discussed. Subsequently, the chapter presents methods to establish the proper intra- or extracellular concentrations of some ascorbate species, as well as methods for the detection of redox reactions between these intra- and extracellular molecules. Ascorbate is stable as a solid, and should only be dissolved on the day of use, because of its susceptibility to oxidative degradation. Ascorbate oxidase (EC 1.10.3.3) is a useful enzyme in the study of ascorbate and its free radical. The enzyme can be purchased as a lyophilized solid. Ascorbate has a strong absorption band at 265 nm, allowing simple and convenient spectrophotometric quantification. Several different approaches are possible for the analysis of dehydroascorbic acid (DHA). Four of them are described in the chapter—namely, reduction of DHA, derivatization of DHA, radioactive labeling of DHA, and NMR and 13C-labeled DHA. It is mentioned that ESR spectroscopy is the most powerful technique for studying free radical molecules, such as ascorbate-free radical (AFR), and their interactions with the living cell.
doi_str_mv 10.1016/S0076-6879(02)52025-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71934640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687902520255</els_id><sourcerecordid>71934640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-9081d37009103af376a4971ca97182bcccc6f4cccd3ebcaa1d051d9964baa69a3</originalsourceid><addsrcrecordid>eNo9kU1rHDEMhk2T0izp_oQWn0JzmES2x-NxLyGEfEEgh7anUozG1oLLfGzt2bL59_Fmk-jwyoJHRtLL2BcBZwJEc_4DwDRV0xr7DeSpliB1pT-whdDaVMa27QFbWtOCkKKVUmt5yBbvLUdsmfNfKCFVrVr4xI4KJ7XSasHib6n-8MsR-6ccM59WfE445oGGrmTiicK0LYp-jtOYv_P7caa0r3Z0HAtfcRwDp215eur7TY-JY_ZT6nAmntfkI-XP7OMK-0zL13zMft1c_7y6qx4eb--vLh8qr4SeKwutCMoAWAEKV8o0WFsjPBZpZedLNKu6aFDUeUQRQItgbVN3iI1FdcxO9v-u0_RvQ3l2Q8y7sco60yY7I6yqmxoK-PUV3HQDBbdOccD05N6OU4CLPUBl3P-RkstlkdFTiIn87MIUnQC3c8i9OOR253Yg3YtDTqtnVoKAZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71934640</pqid></control><display><type>article</type><title>[23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>ScienceDirect eBooks</source><creator>Vanduijn, Martun M. ; Van der Zee, Jolanda ; Van den Broek, Peter J.A.</creator><creatorcontrib>Vanduijn, Martun M. ; Van der Zee, Jolanda ; Van den Broek, Peter J.A.</creatorcontrib><description>The chapter discusses techniques that can be used to study ascorbate-related redox reactions across cell membranes. First, the quantification of intra- and extracellular ascorbate species is discussed. Subsequently, the chapter presents methods to establish the proper intra- or extracellular concentrations of some ascorbate species, as well as methods for the detection of redox reactions between these intra- and extracellular molecules. Ascorbate is stable as a solid, and should only be dissolved on the day of use, because of its susceptibility to oxidative degradation. Ascorbate oxidase (EC 1.10.3.3) is a useful enzyme in the study of ascorbate and its free radical. The enzyme can be purchased as a lyophilized solid. Ascorbate has a strong absorption band at 265 nm, allowing simple and convenient spectrophotometric quantification. Several different approaches are possible for the analysis of dehydroascorbic acid (DHA). Four of them are described in the chapter—namely, reduction of DHA, derivatization of DHA, radioactive labeling of DHA, and NMR and 13C-labeled DHA. It is mentioned that ESR spectroscopy is the most powerful technique for studying free radical molecules, such as ascorbate-free radical (AFR), and their interactions with the living cell.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121822552</identifier><identifier>ISBN: 0121822559</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(02)52025-5</identifier><identifier>PMID: 12125353</identifier><language>eng</language><publisher>United States: Elsevier Science &amp; Technology</publisher><subject>Ascorbic Acid - metabolism ; Cell Membrane - metabolism ; Chemistry - methods ; Chromatography, High Pressure Liquid ; Dehydroascorbic Acid - metabolism ; Electron Spin Resonance Spectroscopy ; Magnetic Resonance Spectroscopy ; Oxidation-Reduction ; Time Factors</subject><ispartof>Methods in Enzymology, 2002, Vol.352, p.268-279</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-9081d37009103af376a4971ca97182bcccc6f4cccd3ebcaa1d051d9964baa69a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0076687902520255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,779,780,784,793,3458,3549,4023,11287,27922,27923,27924,45809,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12125353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanduijn, Martun M.</creatorcontrib><creatorcontrib>Van der Zee, Jolanda</creatorcontrib><creatorcontrib>Van den Broek, Peter J.A.</creatorcontrib><title>[23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>The chapter discusses techniques that can be used to study ascorbate-related redox reactions across cell membranes. First, the quantification of intra- and extracellular ascorbate species is discussed. Subsequently, the chapter presents methods to establish the proper intra- or extracellular concentrations of some ascorbate species, as well as methods for the detection of redox reactions between these intra- and extracellular molecules. Ascorbate is stable as a solid, and should only be dissolved on the day of use, because of its susceptibility to oxidative degradation. Ascorbate oxidase (EC 1.10.3.3) is a useful enzyme in the study of ascorbate and its free radical. The enzyme can be purchased as a lyophilized solid. Ascorbate has a strong absorption band at 265 nm, allowing simple and convenient spectrophotometric quantification. Several different approaches are possible for the analysis of dehydroascorbic acid (DHA). Four of them are described in the chapter—namely, reduction of DHA, derivatization of DHA, radioactive labeling of DHA, and NMR and 13C-labeled DHA. It is mentioned that ESR spectroscopy is the most powerful technique for studying free radical molecules, such as ascorbate-free radical (AFR), and their interactions with the living cell.</description><subject>Ascorbic Acid - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Chemistry - methods</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Dehydroascorbic Acid - metabolism</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Oxidation-Reduction</subject><subject>Time Factors</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121822552</isbn><isbn>0121822559</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU1rHDEMhk2T0izp_oQWn0JzmES2x-NxLyGEfEEgh7anUozG1oLLfGzt2bL59_Fmk-jwyoJHRtLL2BcBZwJEc_4DwDRV0xr7DeSpliB1pT-whdDaVMa27QFbWtOCkKKVUmt5yBbvLUdsmfNfKCFVrVr4xI4KJ7XSasHib6n-8MsR-6ccM59WfE445oGGrmTiicK0LYp-jtOYv_P7caa0r3Z0HAtfcRwDp215eur7TY-JY_ZT6nAmntfkI-XP7OMK-0zL13zMft1c_7y6qx4eb--vLh8qr4SeKwutCMoAWAEKV8o0WFsjPBZpZedLNKu6aFDUeUQRQItgbVN3iI1FdcxO9v-u0_RvQ3l2Q8y7sco60yY7I6yqmxoK-PUV3HQDBbdOccD05N6OU4CLPUBl3P-RkstlkdFTiIn87MIUnQC3c8i9OOR253Yg3YtDTqtnVoKAZA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Vanduijn, Martun M.</creator><creator>Van der Zee, Jolanda</creator><creator>Van den Broek, Peter J.A.</creator><general>Elsevier Science &amp; Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>[23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species</title><author>Vanduijn, Martun M. ; Van der Zee, Jolanda ; Van den Broek, Peter J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-9081d37009103af376a4971ca97182bcccc6f4cccd3ebcaa1d051d9964baa69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Ascorbic Acid - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Chemistry - methods</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Dehydroascorbic Acid - metabolism</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Oxidation-Reduction</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanduijn, Martun M.</creatorcontrib><creatorcontrib>Van der Zee, Jolanda</creatorcontrib><creatorcontrib>Van den Broek, Peter J.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanduijn, Martun M.</au><au>Van der Zee, Jolanda</au><au>Van den Broek, Peter J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2002</date><risdate>2002</risdate><volume>352</volume><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121822552</isbn><isbn>0121822559</isbn><abstract>The chapter discusses techniques that can be used to study ascorbate-related redox reactions across cell membranes. First, the quantification of intra- and extracellular ascorbate species is discussed. Subsequently, the chapter presents methods to establish the proper intra- or extracellular concentrations of some ascorbate species, as well as methods for the detection of redox reactions between these intra- and extracellular molecules. Ascorbate is stable as a solid, and should only be dissolved on the day of use, because of its susceptibility to oxidative degradation. Ascorbate oxidase (EC 1.10.3.3) is a useful enzyme in the study of ascorbate and its free radical. The enzyme can be purchased as a lyophilized solid. Ascorbate has a strong absorption band at 265 nm, allowing simple and convenient spectrophotometric quantification. Several different approaches are possible for the analysis of dehydroascorbic acid (DHA). Four of them are described in the chapter—namely, reduction of DHA, derivatization of DHA, radioactive labeling of DHA, and NMR and 13C-labeled DHA. It is mentioned that ESR spectroscopy is the most powerful technique for studying free radical molecules, such as ascorbate-free radical (AFR), and their interactions with the living cell.</abstract><cop>United States</cop><pub>Elsevier Science &amp; Technology</pub><pmid>12125353</pmid><doi>10.1016/S0076-6879(02)52025-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 2002, Vol.352, p.268-279
issn 0076-6879
1557-7988
language eng
recordid cdi_proquest_miscellaneous_71934640
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; ScienceDirect eBooks
subjects Ascorbic Acid - metabolism
Cell Membrane - metabolism
Chemistry - methods
Chromatography, High Pressure Liquid
Dehydroascorbic Acid - metabolism
Electron Spin Resonance Spectroscopy
Magnetic Resonance Spectroscopy
Oxidation-Reduction
Time Factors
title [23] Analysis of transmembrane redox reactions: Interaction of intra- and extracellular ascorbate species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B23%5D%20Analysis%20of%20transmembrane%20redox%20reactions:%20Interaction%20of%20intra-%20and%20extracellular%20ascorbate%20species&rft.jtitle=Methods%20in%20Enzymology&rft.au=Vanduijn,%20Martun%20M.&rft.date=2002&rft.volume=352&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121822552&rft.isbn_list=0121822559&rft_id=info:doi/10.1016/S0076-6879(02)52025-5&rft_dat=%3Cproquest_pubme%3E71934640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71934640&rft_id=info:pmid/12125353&rft_els_id=S0076687902520255&rfr_iscdi=true