Solution-State Dynamic Nuclear Polarization at High Magnetic Field

The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2002-07, Vol.124 (30), p.8808-8809
Hauptverfasser: Loening, Nikolaus M, Rosay, Melanie, Weis, Volker, Griffin, Robert G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8809
container_issue 30
container_start_page 8808
container_title Journal of the American Chemical Society
container_volume 124
creator Loening, Nikolaus M
Rosay, Melanie
Weis, Volker
Griffin, Robert G
description The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.
doi_str_mv 10.1021/ja026660g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71931186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71931186</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</originalsourceid><addsrcrecordid>eNpt0MtOwzAQBVALgaAUFvwAygYkFgGPHcfpkneReFQU1tbUdopLmoCdSMDXY9Sq3bCybB9dzVxCDoCeAmVwNkPK8jyn0w3SA8FoKoDlm6RHKWWpLHK-Q3ZDmMVrxgrYJjvAgEvBBj1yMW6qrnVNnY5bbG1y9V3j3OnksdOVRZ-Mmgq9-8E_kmCbDN30LXnAaW3bqG6crcwe2SqxCnZ_efbJ6831y-UwvX-6vbs8v0-Ry0GbllobaQQIwbXVwAuTSW14LtiEsUFhOIqS6_hUokHMRGktmCJDIyGzOEHeJ8eL3A_ffHY2tGrugrZVhbVtuqAkDDhA3LZPThZQ-yYEb0v14d0c_bcCqv4KU6vCoj1chnaTuTVruWwogqMlwKCxKj3W2oW14wWVkono0oVzobVfq3_07yqXMUq9jMbqWXLIR89UPa5zUQc1azpfx-7-GfAXThSN6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71931186</pqid></control><display><type>article</type><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><source>MEDLINE</source><source>ACS Publications</source><creator>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</creator><creatorcontrib>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</creatorcontrib><description>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja026660g</identifier><identifier>PMID: 12137529</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic Resonance Spectroscopy - methods ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Magnetics ; Nuclear magnetic resonance and relaxation ; Physics ; Relaxation effects ; Solutions</subject><ispartof>Journal of the American Chemical Society, 2002-07, Vol.124 (30), p.8808-8809</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</citedby><cites>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja026660g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja026660g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13807725$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12137529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loening, Nikolaus M</creatorcontrib><creatorcontrib>Rosay, Melanie</creatorcontrib><creatorcontrib>Weis, Volker</creatorcontrib><creatorcontrib>Griffin, Robert G</creatorcontrib><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Magnetics</subject><subject>Nuclear magnetic resonance and relaxation</subject><subject>Physics</subject><subject>Relaxation effects</subject><subject>Solutions</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtOwzAQBVALgaAUFvwAygYkFgGPHcfpkneReFQU1tbUdopLmoCdSMDXY9Sq3bCybB9dzVxCDoCeAmVwNkPK8jyn0w3SA8FoKoDlm6RHKWWpLHK-Q3ZDmMVrxgrYJjvAgEvBBj1yMW6qrnVNnY5bbG1y9V3j3OnksdOVRZ-Mmgq9-8E_kmCbDN30LXnAaW3bqG6crcwe2SqxCnZ_efbJ6831y-UwvX-6vbs8v0-Ry0GbllobaQQIwbXVwAuTSW14LtiEsUFhOIqS6_hUokHMRGktmCJDIyGzOEHeJ8eL3A_ffHY2tGrugrZVhbVtuqAkDDhA3LZPThZQ-yYEb0v14d0c_bcCqv4KU6vCoj1chnaTuTVruWwogqMlwKCxKj3W2oW14wWVkono0oVzobVfq3_07yqXMUq9jMbqWXLIR89UPa5zUQc1azpfx-7-GfAXThSN6A</recordid><startdate>20020731</startdate><enddate>20020731</enddate><creator>Loening, Nikolaus M</creator><creator>Rosay, Melanie</creator><creator>Weis, Volker</creator><creator>Griffin, Robert G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020731</creationdate><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><author>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Magnetics</topic><topic>Nuclear magnetic resonance and relaxation</topic><topic>Physics</topic><topic>Relaxation effects</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loening, Nikolaus M</creatorcontrib><creatorcontrib>Rosay, Melanie</creatorcontrib><creatorcontrib>Weis, Volker</creatorcontrib><creatorcontrib>Griffin, Robert G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loening, Nikolaus M</au><au>Rosay, Melanie</au><au>Weis, Volker</au><au>Griffin, Robert G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2002-07-31</date><risdate>2002</risdate><volume>124</volume><issue>30</issue><spage>8808</spage><epage>8809</epage><pages>8808-8809</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12137529</pmid><doi>10.1021/ja026660g</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2002-07, Vol.124 (30), p.8808-8809
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_71931186
source MEDLINE; ACS Publications
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Magnetic Resonance Spectroscopy - methods
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Magnetics
Nuclear magnetic resonance and relaxation
Physics
Relaxation effects
Solutions
title Solution-State Dynamic Nuclear Polarization at High Magnetic Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-State%20Dynamic%20Nuclear%20Polarization%20at%20High%20Magnetic%20Field&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Loening,%20Nikolaus%20M&rft.date=2002-07-31&rft.volume=124&rft.issue=30&rft.spage=8808&rft.epage=8809&rft.pages=8808-8809&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja026660g&rft_dat=%3Cproquest_cross%3E71931186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71931186&rft_id=info:pmid/12137529&rfr_iscdi=true