Solution-State Dynamic Nuclear Polarization at High Magnetic Field
The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overh...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2002-07, Vol.124 (30), p.8808-8809 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8809 |
---|---|
container_issue | 30 |
container_start_page | 8808 |
container_title | Journal of the American Chemical Society |
container_volume | 124 |
creator | Loening, Nikolaus M Rosay, Melanie Weis, Volker Griffin, Robert G |
description | The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively. |
doi_str_mv | 10.1021/ja026660g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71931186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71931186</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</originalsourceid><addsrcrecordid>eNpt0MtOwzAQBVALgaAUFvwAygYkFgGPHcfpkneReFQU1tbUdopLmoCdSMDXY9Sq3bCybB9dzVxCDoCeAmVwNkPK8jyn0w3SA8FoKoDlm6RHKWWpLHK-Q3ZDmMVrxgrYJjvAgEvBBj1yMW6qrnVNnY5bbG1y9V3j3OnksdOVRZ-Mmgq9-8E_kmCbDN30LXnAaW3bqG6crcwe2SqxCnZ_efbJ6831y-UwvX-6vbs8v0-Ry0GbllobaQQIwbXVwAuTSW14LtiEsUFhOIqS6_hUokHMRGktmCJDIyGzOEHeJ8eL3A_ffHY2tGrugrZVhbVtuqAkDDhA3LZPThZQ-yYEb0v14d0c_bcCqv4KU6vCoj1chnaTuTVruWwogqMlwKCxKj3W2oW14wWVkono0oVzobVfq3_07yqXMUq9jMbqWXLIR89UPa5zUQc1azpfx-7-GfAXThSN6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71931186</pqid></control><display><type>article</type><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><source>MEDLINE</source><source>ACS Publications</source><creator>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</creator><creatorcontrib>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</creatorcontrib><description>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja026660g</identifier><identifier>PMID: 12137529</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic Resonance Spectroscopy - methods ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Magnetics ; Nuclear magnetic resonance and relaxation ; Physics ; Relaxation effects ; Solutions</subject><ispartof>Journal of the American Chemical Society, 2002-07, Vol.124 (30), p.8808-8809</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</citedby><cites>FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja026660g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja026660g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13807725$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12137529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loening, Nikolaus M</creatorcontrib><creatorcontrib>Rosay, Melanie</creatorcontrib><creatorcontrib>Weis, Volker</creatorcontrib><creatorcontrib>Griffin, Robert G</creatorcontrib><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Magnetics</subject><subject>Nuclear magnetic resonance and relaxation</subject><subject>Physics</subject><subject>Relaxation effects</subject><subject>Solutions</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtOwzAQBVALgaAUFvwAygYkFgGPHcfpkneReFQU1tbUdopLmoCdSMDXY9Sq3bCybB9dzVxCDoCeAmVwNkPK8jyn0w3SA8FoKoDlm6RHKWWpLHK-Q3ZDmMVrxgrYJjvAgEvBBj1yMW6qrnVNnY5bbG1y9V3j3OnksdOVRZ-Mmgq9-8E_kmCbDN30LXnAaW3bqG6crcwe2SqxCnZ_efbJ6831y-UwvX-6vbs8v0-Ry0GbllobaQQIwbXVwAuTSW14LtiEsUFhOIqS6_hUokHMRGktmCJDIyGzOEHeJ8eL3A_ffHY2tGrugrZVhbVtuqAkDDhA3LZPThZQ-yYEb0v14d0c_bcCqv4KU6vCoj1chnaTuTVruWwogqMlwKCxKj3W2oW14wWVkono0oVzobVfq3_07yqXMUq9jMbqWXLIR89UPa5zUQc1azpfx-7-GfAXThSN6A</recordid><startdate>20020731</startdate><enddate>20020731</enddate><creator>Loening, Nikolaus M</creator><creator>Rosay, Melanie</creator><creator>Weis, Volker</creator><creator>Griffin, Robert G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020731</creationdate><title>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</title><author>Loening, Nikolaus M ; Rosay, Melanie ; Weis, Volker ; Griffin, Robert G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-fccd7d51553cec138d47cd3652b2298d3a5f3c7cdfadaa45fee1d84ad714eaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Magnetics</topic><topic>Nuclear magnetic resonance and relaxation</topic><topic>Physics</topic><topic>Relaxation effects</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loening, Nikolaus M</creatorcontrib><creatorcontrib>Rosay, Melanie</creatorcontrib><creatorcontrib>Weis, Volker</creatorcontrib><creatorcontrib>Griffin, Robert G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loening, Nikolaus M</au><au>Rosay, Melanie</au><au>Weis, Volker</au><au>Griffin, Robert G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-State Dynamic Nuclear Polarization at High Magnetic Field</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2002-07-31</date><risdate>2002</risdate><volume>124</volume><issue>30</issue><spage>8808</spage><epage>8809</epage><pages>8808-8809</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than ∼1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, −36, and 8, for 31P, 13C, 15N, and 19F, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12137529</pmid><doi>10.1021/ja026660g</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2002-07, Vol.124 (30), p.8808-8809 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_71931186 |
source | MEDLINE; ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology Magnetic Resonance Spectroscopy - methods Magnetic resonances and relaxations in condensed matter, mössbauer effect Magnetics Nuclear magnetic resonance and relaxation Physics Relaxation effects Solutions |
title | Solution-State Dynamic Nuclear Polarization at High Magnetic Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-State%20Dynamic%20Nuclear%20Polarization%20at%20High%20Magnetic%20Field&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Loening,%20Nikolaus%20M&rft.date=2002-07-31&rft.volume=124&rft.issue=30&rft.spage=8808&rft.epage=8809&rft.pages=8808-8809&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja026660g&rft_dat=%3Cproquest_cross%3E71931186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71931186&rft_id=info:pmid/12137529&rfr_iscdi=true |