The embryonic development of the flatworm Macrostomum sp
Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2-3 weeks and produces a large number of eggs year round. Using live obse...
Gespeichert in:
Veröffentlicht in: | Development genes and evolution 2004-05, Vol.214 (5), p.220-239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 5 |
container_start_page | 220 |
container_title | Development genes and evolution |
container_volume | 214 |
creator | Morris, Joshua Nallur, Ramachandra Ladurner, Peter Egger, Bernhard Rieger, Reinhard Hartenstein, Volker |
description | Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2-3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1-2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system. |
doi_str_mv | 10.1007/s00427-004-0406-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71927010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18038581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a1756f1956c41509dc7628e672325f514a11d1db5ce8566c2c78f236d874ef1b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-AC8SPHiL7ux3jlL8goqXCr0tyWYXW5Js3E2U_nu3tCB48TLDMM98vC9Cl4BvAWN5FzFmROYp5phhkbMjNAVGSapgdYymuGBFXjC2mqCzGDcYAykoP0UT4FhRKmCK1PLDZratwtZ3a5PV9ss2vm9tN2TeZUNquqYcvn1os9fSBB8H345tFvtzdOLKJtqLQ56h98eH5fw5X7w9vczvF7mhnA95CZILBwUXhqWrRW2kIMoKSSjhjgMrAWqoK26s4kIYYqRyhIpaSWYdVHSGbvZ7--A_RxsH3a6jsU1TdtaPUUsoiMSA_wVBYaq4ggRe_wE3fgxdEqEVlulLEDxBsId2mmOwTvdh3ZZhqwHrnfl6b75OUe_M1yzNXB0Wj1Vr69-Jg9v0B8brfVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807415165</pqid></control><display><type>article</type><title>The embryonic development of the flatworm Macrostomum sp</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Morris, Joshua ; Nallur, Ramachandra ; Ladurner, Peter ; Egger, Bernhard ; Rieger, Reinhard ; Hartenstein, Volker</creator><creatorcontrib>Morris, Joshua ; Nallur, Ramachandra ; Ladurner, Peter ; Egger, Bernhard ; Rieger, Reinhard ; Hartenstein, Volker</creatorcontrib><description>Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2-3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1-2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system.</description><identifier>ISSN: 0949-944X</identifier><identifier>EISSN: 1432-041X</identifier><identifier>DOI: 10.1007/s00427-004-0406-4</identifier><identifier>PMID: 15083361</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Animals ; Axonogenesis ; Body wall ; Cell Differentiation ; Cilia ; Developmental stages ; Digestive system ; Electron microscopy ; Embryo, Nonmammalian ; Embryogenesis ; Epidermis ; Epidermis - embryology ; Epidermis - ultrastructure ; Epithelium ; Gastrointestinal tract ; Immunohistochemistry ; Macrostomum ; Microfilaments ; Nervous system ; Organogenesis ; Pharynx ; Pharynx - embryology ; Pharynx - ultrastructure ; Physical characteristics ; Platyhelminths - embryology ; Platyhelminths - ultrastructure</subject><ispartof>Development genes and evolution, 2004-05, Vol.214 (5), p.220-239</ispartof><rights>Copyright Springer Nature B.V. May 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a1756f1956c41509dc7628e672325f514a11d1db5ce8566c2c78f236d874ef1b3</citedby><cites>FETCH-LOGICAL-c355t-a1756f1956c41509dc7628e672325f514a11d1db5ce8566c2c78f236d874ef1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15083361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Joshua</creatorcontrib><creatorcontrib>Nallur, Ramachandra</creatorcontrib><creatorcontrib>Ladurner, Peter</creatorcontrib><creatorcontrib>Egger, Bernhard</creatorcontrib><creatorcontrib>Rieger, Reinhard</creatorcontrib><creatorcontrib>Hartenstein, Volker</creatorcontrib><title>The embryonic development of the flatworm Macrostomum sp</title><title>Development genes and evolution</title><addtitle>Dev Genes Evol</addtitle><description>Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2-3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1-2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system.</description><subject>Animals</subject><subject>Axonogenesis</subject><subject>Body wall</subject><subject>Cell Differentiation</subject><subject>Cilia</subject><subject>Developmental stages</subject><subject>Digestive system</subject><subject>Electron microscopy</subject><subject>Embryo, Nonmammalian</subject><subject>Embryogenesis</subject><subject>Epidermis</subject><subject>Epidermis - embryology</subject><subject>Epidermis - ultrastructure</subject><subject>Epithelium</subject><subject>Gastrointestinal tract</subject><subject>Immunohistochemistry</subject><subject>Macrostomum</subject><subject>Microfilaments</subject><subject>Nervous system</subject><subject>Organogenesis</subject><subject>Pharynx</subject><subject>Pharynx - embryology</subject><subject>Pharynx - ultrastructure</subject><subject>Physical characteristics</subject><subject>Platyhelminths - embryology</subject><subject>Platyhelminths - ultrastructure</subject><issn>0949-944X</issn><issn>1432-041X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-AC8SPHiL7ux3jlL8goqXCr0tyWYXW5Js3E2U_nu3tCB48TLDMM98vC9Cl4BvAWN5FzFmROYp5phhkbMjNAVGSapgdYymuGBFXjC2mqCzGDcYAykoP0UT4FhRKmCK1PLDZratwtZ3a5PV9ss2vm9tN2TeZUNquqYcvn1os9fSBB8H345tFvtzdOLKJtqLQ56h98eH5fw5X7w9vczvF7mhnA95CZILBwUXhqWrRW2kIMoKSSjhjgMrAWqoK26s4kIYYqRyhIpaSWYdVHSGbvZ7--A_RxsH3a6jsU1TdtaPUUsoiMSA_wVBYaq4ggRe_wE3fgxdEqEVlulLEDxBsId2mmOwTvdh3ZZhqwHrnfl6b75OUe_M1yzNXB0Wj1Vr69-Jg9v0B8brfVI</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Morris, Joshua</creator><creator>Nallur, Ramachandra</creator><creator>Ladurner, Peter</creator><creator>Egger, Bernhard</creator><creator>Rieger, Reinhard</creator><creator>Hartenstein, Volker</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>The embryonic development of the flatworm Macrostomum sp</title><author>Morris, Joshua ; Nallur, Ramachandra ; Ladurner, Peter ; Egger, Bernhard ; Rieger, Reinhard ; Hartenstein, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a1756f1956c41509dc7628e672325f514a11d1db5ce8566c2c78f236d874ef1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Axonogenesis</topic><topic>Body wall</topic><topic>Cell Differentiation</topic><topic>Cilia</topic><topic>Developmental stages</topic><topic>Digestive system</topic><topic>Electron microscopy</topic><topic>Embryo, Nonmammalian</topic><topic>Embryogenesis</topic><topic>Epidermis</topic><topic>Epidermis - embryology</topic><topic>Epidermis - ultrastructure</topic><topic>Epithelium</topic><topic>Gastrointestinal tract</topic><topic>Immunohistochemistry</topic><topic>Macrostomum</topic><topic>Microfilaments</topic><topic>Nervous system</topic><topic>Organogenesis</topic><topic>Pharynx</topic><topic>Pharynx - embryology</topic><topic>Pharynx - ultrastructure</topic><topic>Physical characteristics</topic><topic>Platyhelminths - embryology</topic><topic>Platyhelminths - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Joshua</creatorcontrib><creatorcontrib>Nallur, Ramachandra</creatorcontrib><creatorcontrib>Ladurner, Peter</creatorcontrib><creatorcontrib>Egger, Bernhard</creatorcontrib><creatorcontrib>Rieger, Reinhard</creatorcontrib><creatorcontrib>Hartenstein, Volker</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development genes and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Joshua</au><au>Nallur, Ramachandra</au><au>Ladurner, Peter</au><au>Egger, Bernhard</au><au>Rieger, Reinhard</au><au>Hartenstein, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The embryonic development of the flatworm Macrostomum sp</atitle><jtitle>Development genes and evolution</jtitle><addtitle>Dev Genes Evol</addtitle><date>2004-05</date><risdate>2004</risdate><volume>214</volume><issue>5</issue><spage>220</spage><epage>239</epage><pages>220-239</pages><issn>0949-944X</issn><eissn>1432-041X</eissn><abstract>Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2-3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1-2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>15083361</pmid><doi>10.1007/s00427-004-0406-4</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-944X |
ispartof | Development genes and evolution, 2004-05, Vol.214 (5), p.220-239 |
issn | 0949-944X 1432-041X |
language | eng |
recordid | cdi_proquest_miscellaneous_71927010 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Axonogenesis Body wall Cell Differentiation Cilia Developmental stages Digestive system Electron microscopy Embryo, Nonmammalian Embryogenesis Epidermis Epidermis - embryology Epidermis - ultrastructure Epithelium Gastrointestinal tract Immunohistochemistry Macrostomum Microfilaments Nervous system Organogenesis Pharynx Pharynx - embryology Pharynx - ultrastructure Physical characteristics Platyhelminths - embryology Platyhelminths - ultrastructure |
title | The embryonic development of the flatworm Macrostomum sp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20embryonic%20development%20of%20the%20flatworm%20Macrostomum%20sp&rft.jtitle=Development%20genes%20and%20evolution&rft.au=Morris,%20Joshua&rft.date=2004-05&rft.volume=214&rft.issue=5&rft.spage=220&rft.epage=239&rft.pages=220-239&rft.issn=0949-944X&rft.eissn=1432-041X&rft_id=info:doi/10.1007/s00427-004-0406-4&rft_dat=%3Cproquest_cross%3E18038581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807415165&rft_id=info:pmid/15083361&rfr_iscdi=true |