Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking
Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cel...
Gespeichert in:
Veröffentlicht in: | Brain research. Molecular brain research. 2004-05, Vol.124 (2), p.114-123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Brain research. Molecular brain research. |
container_volume | 124 |
creator | Hughes, Ethan G Maguire, Jamie L McMinn, Melanie T Scholz, Rachael E Sutherland, Margaret L |
description | Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the
V
max for
d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function. |
doi_str_mv | 10.1016/j.molbrainres.2004.02.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71913916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169328X0400083X</els_id><sourcerecordid>71913916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</originalsourceid><addsrcrecordid>eNqNkcuKFDEUhgtRnHb0FSQudFdtTt2zbJrxgg26GMFdyOVkPG2qqk1Sgg_hO5uyG5ydwoFk8f3n8v9F8QL4Fjh0r4_bcfY6KJoCxm3FebPlVS54UGxg6KuyEw08LDaZFWVdDV-uiicxHjnnMAA8Lq6ghbqtQGyKX4c5RjY7dudJeeZIB_JehZ9MGbJk2CnMCWliedLiU2T5a9EEVBFtFi1JjSohS0FN8TSHxNRkM_SVNCWap7X1pw-7kia7mKy42e1uK2bQexaX4JT5I3WOzDea7p4Wj5zyEZ9d3uvi85ub2_278vDx7fv97lCalvNU2q63vGk0d7pta9vyvtbYi27QDhvXtcI6xaEyCjoUSvEBe6gsNlqITre2ra-LV-e--brvC8YkR4rrUmrCeYmyBwG1gO6fIAyrp12TQXEGTciGBnTyFGjMPkrgcg1NHuW90OQamuRVLsja55chix7R_lVeUsrAywugolHeZa8NxXtcX_Oh7zO3P3OYvftBGGQ0hFP2nQKaJO1M_7HObzVhveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18001864</pqid></control><display><type>article</type><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</creator><creatorcontrib>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</creatorcontrib><description>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the
V
max for
d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</description><identifier>ISSN: 0169-328X</identifier><identifier>EISSN: 1872-6941</identifier><identifier>DOI: 10.1016/j.molbrainres.2004.02.021</identifier><identifier>PMID: 15135219</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amino Acid Transport System X-AG - metabolism ; Animals ; Astrocyte ; Astrocytes - metabolism ; Biological and medical sciences ; Bucladesine - pharmacology ; Cell Communication - drug effects ; Cell Communication - physiology ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - metabolism ; Cyclic AMP-Dependent Protein Kinases - drug effects ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Down-Regulation - drug effects ; Down-Regulation - physiology ; Excitatory Amino Acid Transporter 1 - metabolism ; Excitatory Amino Acid Transporter 2 - metabolism ; Excitatory Amino Acid Transporter 3 ; Fundamental and applied biological sciences. Psychology ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - deficiency ; Glial Fibrillary Acidic Protein - genetics ; Glutamate Plasma Membrane Transport Proteins ; Glutamate transporter ; Glutamic Acid - metabolism ; Hippocampus - cytology ; Hippocampus - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - metabolism ; Neuron–glial interaction ; Phenotype ; Protein Transport - drug effects ; Protein Transport - physiology ; Symporters - metabolism ; Synaptosomes ; Trafficking ; Transgenic ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research. Molecular brain research., 2004-05, Vol.124 (2), p.114-123</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</citedby><cites>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15730877$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15135219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Maguire, Jamie L</creatorcontrib><creatorcontrib>McMinn, Melanie T</creatorcontrib><creatorcontrib>Scholz, Rachael E</creatorcontrib><creatorcontrib>Sutherland, Margaret L</creatorcontrib><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><title>Brain research. Molecular brain research.</title><addtitle>Brain Res Mol Brain Res</addtitle><description>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the
V
max for
d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</description><subject>Amino Acid Transport System X-AG - metabolism</subject><subject>Animals</subject><subject>Astrocyte</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bucladesine - pharmacology</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - drug effects</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Down-Regulation - drug effects</subject><subject>Down-Regulation - physiology</subject><subject>Excitatory Amino Acid Transporter 1 - metabolism</subject><subject>Excitatory Amino Acid Transporter 2 - metabolism</subject><subject>Excitatory Amino Acid Transporter 3</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - deficiency</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glutamate Plasma Membrane Transport Proteins</subject><subject>Glutamate transporter</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - metabolism</subject><subject>Neuron–glial interaction</subject><subject>Phenotype</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - physiology</subject><subject>Symporters - metabolism</subject><subject>Synaptosomes</subject><subject>Trafficking</subject><subject>Transgenic</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0169-328X</issn><issn>1872-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFDEUhgtRnHb0FSQudFdtTt2zbJrxgg26GMFdyOVkPG2qqk1Sgg_hO5uyG5ydwoFk8f3n8v9F8QL4Fjh0r4_bcfY6KJoCxm3FebPlVS54UGxg6KuyEw08LDaZFWVdDV-uiicxHjnnMAA8Lq6ghbqtQGyKX4c5RjY7dudJeeZIB_JehZ9MGbJk2CnMCWliedLiU2T5a9EEVBFtFi1JjSohS0FN8TSHxNRkM_SVNCWap7X1pw-7kia7mKy42e1uK2bQexaX4JT5I3WOzDea7p4Wj5zyEZ9d3uvi85ub2_278vDx7fv97lCalvNU2q63vGk0d7pta9vyvtbYi27QDhvXtcI6xaEyCjoUSvEBe6gsNlqITre2ra-LV-e--brvC8YkR4rrUmrCeYmyBwG1gO6fIAyrp12TQXEGTciGBnTyFGjMPkrgcg1NHuW90OQamuRVLsja55chix7R_lVeUsrAywugolHeZa8NxXtcX_Oh7zO3P3OYvftBGGQ0hFP2nQKaJO1M_7HObzVhveA</recordid><startdate>20040519</startdate><enddate>20040519</enddate><creator>Hughes, Ethan G</creator><creator>Maguire, Jamie L</creator><creator>McMinn, Melanie T</creator><creator>Scholz, Rachael E</creator><creator>Sutherland, Margaret L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040519</creationdate><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><author>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Transport System X-AG - metabolism</topic><topic>Animals</topic><topic>Astrocyte</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bucladesine - pharmacology</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - drug effects</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Down-Regulation - drug effects</topic><topic>Down-Regulation - physiology</topic><topic>Excitatory Amino Acid Transporter 1 - metabolism</topic><topic>Excitatory Amino Acid Transporter 2 - metabolism</topic><topic>Excitatory Amino Acid Transporter 3</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - deficiency</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glutamate Plasma Membrane Transport Proteins</topic><topic>Glutamate transporter</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - metabolism</topic><topic>Neuron–glial interaction</topic><topic>Phenotype</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - physiology</topic><topic>Symporters - metabolism</topic><topic>Synaptosomes</topic><topic>Trafficking</topic><topic>Transgenic</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Maguire, Jamie L</creatorcontrib><creatorcontrib>McMinn, Melanie T</creatorcontrib><creatorcontrib>Scholz, Rachael E</creatorcontrib><creatorcontrib>Sutherland, Margaret L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research. Molecular brain research.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Ethan G</au><au>Maguire, Jamie L</au><au>McMinn, Melanie T</au><au>Scholz, Rachael E</au><au>Sutherland, Margaret L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</atitle><jtitle>Brain research. Molecular brain research.</jtitle><addtitle>Brain Res Mol Brain Res</addtitle><date>2004-05-19</date><risdate>2004</risdate><volume>124</volume><issue>2</issue><spage>114</spage><epage>123</epage><pages>114-123</pages><issn>0169-328X</issn><eissn>1872-6941</eissn><abstract>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the
V
max for
d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>15135219</pmid><doi>10.1016/j.molbrainres.2004.02.021</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-328X |
ispartof | Brain research. Molecular brain research., 2004-05, Vol.124 (2), p.114-123 |
issn | 0169-328X 1872-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_71913916 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Amino Acid Transport System X-AG - metabolism Animals Astrocyte Astrocytes - metabolism Biological and medical sciences Bucladesine - pharmacology Cell Communication - drug effects Cell Communication - physiology Cell Membrane - drug effects Cell Membrane - metabolism Cells, Cultured Cerebral Cortex - cytology Cerebral Cortex - metabolism Cyclic AMP-Dependent Protein Kinases - drug effects Cyclic AMP-Dependent Protein Kinases - metabolism Down-Regulation - drug effects Down-Regulation - physiology Excitatory Amino Acid Transporter 1 - metabolism Excitatory Amino Acid Transporter 2 - metabolism Excitatory Amino Acid Transporter 3 Fundamental and applied biological sciences. Psychology Glial fibrillary acidic protein Glial Fibrillary Acidic Protein - deficiency Glial Fibrillary Acidic Protein - genetics Glutamate Plasma Membrane Transport Proteins Glutamate transporter Glutamic Acid - metabolism Hippocampus - cytology Hippocampus - metabolism Mice Mice, Inbred C57BL Mice, Knockout Neurons - metabolism Neuron–glial interaction Phenotype Protein Transport - drug effects Protein Transport - physiology Symporters - metabolism Synaptosomes Trafficking Transgenic Vertebrates: nervous system and sense organs |
title | Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20glial%20fibrillary%20acidic%20protein%20results%20in%20decreased%20glutamate%20transport%20and%20inhibition%20of%20PKA-induced%20EAAT2%20cell%20surface%20trafficking&rft.jtitle=Brain%20research.%20Molecular%20brain%20research.&rft.au=Hughes,%20Ethan%20G&rft.date=2004-05-19&rft.volume=124&rft.issue=2&rft.spage=114&rft.epage=123&rft.pages=114-123&rft.issn=0169-328X&rft.eissn=1872-6941&rft_id=info:doi/10.1016/j.molbrainres.2004.02.021&rft_dat=%3Cproquest_cross%3E71913916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18001864&rft_id=info:pmid/15135219&rft_els_id=S0169328X0400083X&rfr_iscdi=true |