Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking

Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research. Molecular brain research. 2004-05, Vol.124 (2), p.114-123
Hauptverfasser: Hughes, Ethan G, Maguire, Jamie L, McMinn, Melanie T, Scholz, Rachael E, Sutherland, Margaret L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 2
container_start_page 114
container_title Brain research. Molecular brain research.
container_volume 124
creator Hughes, Ethan G
Maguire, Jamie L
McMinn, Melanie T
Scholz, Rachael E
Sutherland, Margaret L
description Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the V max for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.
doi_str_mv 10.1016/j.molbrainres.2004.02.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71913916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169328X0400083X</els_id><sourcerecordid>71913916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</originalsourceid><addsrcrecordid>eNqNkcuKFDEUhgtRnHb0FSQudFdtTt2zbJrxgg26GMFdyOVkPG2qqk1Sgg_hO5uyG5ydwoFk8f3n8v9F8QL4Fjh0r4_bcfY6KJoCxm3FebPlVS54UGxg6KuyEw08LDaZFWVdDV-uiicxHjnnMAA8Lq6ghbqtQGyKX4c5RjY7dudJeeZIB_JehZ9MGbJk2CnMCWliedLiU2T5a9EEVBFtFi1JjSohS0FN8TSHxNRkM_SVNCWap7X1pw-7kia7mKy42e1uK2bQexaX4JT5I3WOzDea7p4Wj5zyEZ9d3uvi85ub2_278vDx7fv97lCalvNU2q63vGk0d7pta9vyvtbYi27QDhvXtcI6xaEyCjoUSvEBe6gsNlqITre2ra-LV-e--brvC8YkR4rrUmrCeYmyBwG1gO6fIAyrp12TQXEGTciGBnTyFGjMPkrgcg1NHuW90OQamuRVLsja55chix7R_lVeUsrAywugolHeZa8NxXtcX_Oh7zO3P3OYvftBGGQ0hFP2nQKaJO1M_7HObzVhveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18001864</pqid></control><display><type>article</type><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</creator><creatorcontrib>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</creatorcontrib><description>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the V max for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</description><identifier>ISSN: 0169-328X</identifier><identifier>EISSN: 1872-6941</identifier><identifier>DOI: 10.1016/j.molbrainres.2004.02.021</identifier><identifier>PMID: 15135219</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amino Acid Transport System X-AG - metabolism ; Animals ; Astrocyte ; Astrocytes - metabolism ; Biological and medical sciences ; Bucladesine - pharmacology ; Cell Communication - drug effects ; Cell Communication - physiology ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - metabolism ; Cyclic AMP-Dependent Protein Kinases - drug effects ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Down-Regulation - drug effects ; Down-Regulation - physiology ; Excitatory Amino Acid Transporter 1 - metabolism ; Excitatory Amino Acid Transporter 2 - metabolism ; Excitatory Amino Acid Transporter 3 ; Fundamental and applied biological sciences. Psychology ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - deficiency ; Glial Fibrillary Acidic Protein - genetics ; Glutamate Plasma Membrane Transport Proteins ; Glutamate transporter ; Glutamic Acid - metabolism ; Hippocampus - cytology ; Hippocampus - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - metabolism ; Neuron–glial interaction ; Phenotype ; Protein Transport - drug effects ; Protein Transport - physiology ; Symporters - metabolism ; Synaptosomes ; Trafficking ; Transgenic ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research. Molecular brain research., 2004-05, Vol.124 (2), p.114-123</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</citedby><cites>FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15730877$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15135219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Maguire, Jamie L</creatorcontrib><creatorcontrib>McMinn, Melanie T</creatorcontrib><creatorcontrib>Scholz, Rachael E</creatorcontrib><creatorcontrib>Sutherland, Margaret L</creatorcontrib><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><title>Brain research. Molecular brain research.</title><addtitle>Brain Res Mol Brain Res</addtitle><description>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the V max for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</description><subject>Amino Acid Transport System X-AG - metabolism</subject><subject>Animals</subject><subject>Astrocyte</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bucladesine - pharmacology</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - drug effects</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Down-Regulation - drug effects</subject><subject>Down-Regulation - physiology</subject><subject>Excitatory Amino Acid Transporter 1 - metabolism</subject><subject>Excitatory Amino Acid Transporter 2 - metabolism</subject><subject>Excitatory Amino Acid Transporter 3</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - deficiency</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glutamate Plasma Membrane Transport Proteins</subject><subject>Glutamate transporter</subject><subject>Glutamic Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - metabolism</subject><subject>Neuron–glial interaction</subject><subject>Phenotype</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - physiology</subject><subject>Symporters - metabolism</subject><subject>Synaptosomes</subject><subject>Trafficking</subject><subject>Transgenic</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0169-328X</issn><issn>1872-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFDEUhgtRnHb0FSQudFdtTt2zbJrxgg26GMFdyOVkPG2qqk1Sgg_hO5uyG5ydwoFk8f3n8v9F8QL4Fjh0r4_bcfY6KJoCxm3FebPlVS54UGxg6KuyEw08LDaZFWVdDV-uiicxHjnnMAA8Lq6ghbqtQGyKX4c5RjY7dudJeeZIB_JehZ9MGbJk2CnMCWliedLiU2T5a9EEVBFtFi1JjSohS0FN8TSHxNRkM_SVNCWap7X1pw-7kia7mKy42e1uK2bQexaX4JT5I3WOzDea7p4Wj5zyEZ9d3uvi85ub2_278vDx7fv97lCalvNU2q63vGk0d7pta9vyvtbYi27QDhvXtcI6xaEyCjoUSvEBe6gsNlqITre2ra-LV-e--brvC8YkR4rrUmrCeYmyBwG1gO6fIAyrp12TQXEGTciGBnTyFGjMPkrgcg1NHuW90OQamuRVLsja55chix7R_lVeUsrAywugolHeZa8NxXtcX_Oh7zO3P3OYvftBGGQ0hFP2nQKaJO1M_7HObzVhveA</recordid><startdate>20040519</startdate><enddate>20040519</enddate><creator>Hughes, Ethan G</creator><creator>Maguire, Jamie L</creator><creator>McMinn, Melanie T</creator><creator>Scholz, Rachael E</creator><creator>Sutherland, Margaret L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040519</creationdate><title>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</title><author>Hughes, Ethan G ; Maguire, Jamie L ; McMinn, Melanie T ; Scholz, Rachael E ; Sutherland, Margaret L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d67d044b0fb553d5073be7968bfe4f659dfa012ca16e9aa08e712de4b996b5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Transport System X-AG - metabolism</topic><topic>Animals</topic><topic>Astrocyte</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bucladesine - pharmacology</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - drug effects</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Down-Regulation - drug effects</topic><topic>Down-Regulation - physiology</topic><topic>Excitatory Amino Acid Transporter 1 - metabolism</topic><topic>Excitatory Amino Acid Transporter 2 - metabolism</topic><topic>Excitatory Amino Acid Transporter 3</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - deficiency</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glutamate Plasma Membrane Transport Proteins</topic><topic>Glutamate transporter</topic><topic>Glutamic Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - metabolism</topic><topic>Neuron–glial interaction</topic><topic>Phenotype</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - physiology</topic><topic>Symporters - metabolism</topic><topic>Synaptosomes</topic><topic>Trafficking</topic><topic>Transgenic</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Ethan G</creatorcontrib><creatorcontrib>Maguire, Jamie L</creatorcontrib><creatorcontrib>McMinn, Melanie T</creatorcontrib><creatorcontrib>Scholz, Rachael E</creatorcontrib><creatorcontrib>Sutherland, Margaret L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research. Molecular brain research.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Ethan G</au><au>Maguire, Jamie L</au><au>McMinn, Melanie T</au><au>Scholz, Rachael E</au><au>Sutherland, Margaret L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking</atitle><jtitle>Brain research. Molecular brain research.</jtitle><addtitle>Brain Res Mol Brain Res</addtitle><date>2004-05-19</date><risdate>2004</risdate><volume>124</volume><issue>2</issue><spage>114</spage><epage>123</epage><pages>114-123</pages><issn>0169-328X</issn><eissn>1872-6941</eissn><abstract>Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25–30% reduction in the V max for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>15135219</pmid><doi>10.1016/j.molbrainres.2004.02.021</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-328X
ispartof Brain research. Molecular brain research., 2004-05, Vol.124 (2), p.114-123
issn 0169-328X
1872-6941
language eng
recordid cdi_proquest_miscellaneous_71913916
source MEDLINE; Alma/SFX Local Collection
subjects Amino Acid Transport System X-AG - metabolism
Animals
Astrocyte
Astrocytes - metabolism
Biological and medical sciences
Bucladesine - pharmacology
Cell Communication - drug effects
Cell Communication - physiology
Cell Membrane - drug effects
Cell Membrane - metabolism
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - metabolism
Cyclic AMP-Dependent Protein Kinases - drug effects
Cyclic AMP-Dependent Protein Kinases - metabolism
Down-Regulation - drug effects
Down-Regulation - physiology
Excitatory Amino Acid Transporter 1 - metabolism
Excitatory Amino Acid Transporter 2 - metabolism
Excitatory Amino Acid Transporter 3
Fundamental and applied biological sciences. Psychology
Glial fibrillary acidic protein
Glial Fibrillary Acidic Protein - deficiency
Glial Fibrillary Acidic Protein - genetics
Glutamate Plasma Membrane Transport Proteins
Glutamate transporter
Glutamic Acid - metabolism
Hippocampus - cytology
Hippocampus - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurons - metabolism
Neuron–glial interaction
Phenotype
Protein Transport - drug effects
Protein Transport - physiology
Symporters - metabolism
Synaptosomes
Trafficking
Transgenic
Vertebrates: nervous system and sense organs
title Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20glial%20fibrillary%20acidic%20protein%20results%20in%20decreased%20glutamate%20transport%20and%20inhibition%20of%20PKA-induced%20EAAT2%20cell%20surface%20trafficking&rft.jtitle=Brain%20research.%20Molecular%20brain%20research.&rft.au=Hughes,%20Ethan%20G&rft.date=2004-05-19&rft.volume=124&rft.issue=2&rft.spage=114&rft.epage=123&rft.pages=114-123&rft.issn=0169-328X&rft.eissn=1872-6941&rft_id=info:doi/10.1016/j.molbrainres.2004.02.021&rft_dat=%3Cproquest_cross%3E71913916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18001864&rft_id=info:pmid/15135219&rft_els_id=S0169328X0400083X&rfr_iscdi=true