Control of carrier density by self-assembled monolayers in organic field-effect transistors
Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has...
Gespeichert in:
Veröffentlicht in: | Nature materials 2004-05, Vol.3 (5), p.317-322 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 5 |
container_start_page | 317 |
container_title | Nature materials |
container_volume | 3 |
creator | Iwasa, Y Kobayashi, S Nishikawa, T Takenobu, T Mori, S Shimoda, T Mitani, T Shimotani, H Yoshimoto, N Ogawa, S |
description | Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has been crucial for the technological development of inorganic semiconductors. In the field-effect device structures, the conduction channel exists at the interface between organic thin films and SiO
2
gate insulators. Here, we discuss a new technique that enables us to control the charge density in the channel by using organosilane self-assembled monolayers (SAMs) on SiO
2
gate insulators. SAMs with fluorine and amino groups have been shown to accumulate holes and electrons, respectively, in the transistor channel: these properties are understood in terms of the effects of electric dipoles of the SAMs molecules, and weak charge transfer between organic films and SAMs. |
doi_str_mv | 10.1038/nmat1105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71900492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71900492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-3092b3a34a2b36ab795bab72a3dc3db849ee02ea99f9db21ef84b2bfb19aad6d3</originalsourceid><addsrcrecordid>eNqF0UFr2zAYBmAxNtY0K_QXFNFD2Q7eJNmWrWMJXVco7LKeejCfrE_BwZZaST7k31claQKFsos-gR69QryEnHP2k7Oy_eUmSJyz-hNZ8KqRRSUl-7zfcy7ECTmNccOY4HUtv5ITXjNZNbVckMeVdyn4kXpLewhhwEANujikLdVbGnG0BcSIkx7R0Mk7P8IWQ6SDoz6swQ09tQOOpkBrsU80Bci3Y_IhfiNfLIwRz_ZzSR5-3_xb_Snu_97era7vi76SLBUlU0KXUFaQhwTdqFrnVUBp-tLotlKITCAoZZXRgqNtKy201VwBGGnKJbna5T4F_zxjTN00xB7HERz6OXYNV4xVSvwXipZz1coyw8t3cOPn4PInOiFEk4VkGX3foT74GAPa7ikME4Rtx1n3Wkv3VkumF_u8WU9ojnDfQwY_diDmI7fGcHzw4zAHaQ54CDuAF0ilolk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222763360</pqid></control><display><type>article</type><title>Control of carrier density by self-assembled monolayers in organic field-effect transistors</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Iwasa, Y ; Kobayashi, S ; Nishikawa, T ; Takenobu, T ; Mori, S ; Shimoda, T ; Mitani, T ; Shimotani, H ; Yoshimoto, N ; Ogawa, S</creator><creatorcontrib>Iwasa, Y ; Kobayashi, S ; Nishikawa, T ; Takenobu, T ; Mori, S ; Shimoda, T ; Mitani, T ; Shimotani, H ; Yoshimoto, N ; Ogawa, S</creatorcontrib><description>Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has been crucial for the technological development of inorganic semiconductors. In the field-effect device structures, the conduction channel exists at the interface between organic thin films and SiO
2
gate insulators. Here, we discuss a new technique that enables us to control the charge density in the channel by using organosilane self-assembled monolayers (SAMs) on SiO
2
gate insulators. SAMs with fluorine and amino groups have been shown to accumulate holes and electrons, respectively, in the transistor channel: these properties are understood in terms of the effects of electric dipoles of the SAMs molecules, and weak charge transfer between organic films and SAMs.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1105</identifier><identifier>PMID: 15064756</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Computer Simulation ; Condensed Matter Physics ; Crystallization - methods ; Electric Conductivity ; Electron Transport ; Equipment Design ; Equipment Failure Analysis ; Fluorine ; Materials Science ; Models, Molecular ; Molecular Conformation ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Optical and Electronic Materials ; Organic Chemicals - chemistry ; Silanes - chemistry ; Silicon Dioxide - chemistry ; Thin films ; Transistors, Electronic</subject><ispartof>Nature materials, 2004-05, Vol.3 (5), p.317-322</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group May 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-3092b3a34a2b36ab795bab72a3dc3db849ee02ea99f9db21ef84b2bfb19aad6d3</citedby><cites>FETCH-LOGICAL-c460t-3092b3a34a2b36ab795bab72a3dc3db849ee02ea99f9db21ef84b2bfb19aad6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15064756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwasa, Y</creatorcontrib><creatorcontrib>Kobayashi, S</creatorcontrib><creatorcontrib>Nishikawa, T</creatorcontrib><creatorcontrib>Takenobu, T</creatorcontrib><creatorcontrib>Mori, S</creatorcontrib><creatorcontrib>Shimoda, T</creatorcontrib><creatorcontrib>Mitani, T</creatorcontrib><creatorcontrib>Shimotani, H</creatorcontrib><creatorcontrib>Yoshimoto, N</creatorcontrib><creatorcontrib>Ogawa, S</creatorcontrib><title>Control of carrier density by self-assembled monolayers in organic field-effect transistors</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has been crucial for the technological development of inorganic semiconductors. In the field-effect device structures, the conduction channel exists at the interface between organic thin films and SiO
2
gate insulators. Here, we discuss a new technique that enables us to control the charge density in the channel by using organosilane self-assembled monolayers (SAMs) on SiO
2
gate insulators. SAMs with fluorine and amino groups have been shown to accumulate holes and electrons, respectively, in the transistor channel: these properties are understood in terms of the effects of electric dipoles of the SAMs molecules, and weak charge transfer between organic films and SAMs.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computer Simulation</subject><subject>Condensed Matter Physics</subject><subject>Crystallization - methods</subject><subject>Electric Conductivity</subject><subject>Electron Transport</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fluorine</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Optical and Electronic Materials</subject><subject>Organic Chemicals - chemistry</subject><subject>Silanes - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><subject>Thin films</subject><subject>Transistors, Electronic</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0UFr2zAYBmAxNtY0K_QXFNFD2Q7eJNmWrWMJXVco7LKeejCfrE_BwZZaST7k31claQKFsos-gR69QryEnHP2k7Oy_eUmSJyz-hNZ8KqRRSUl-7zfcy7ECTmNccOY4HUtv5ITXjNZNbVckMeVdyn4kXpLewhhwEANujikLdVbGnG0BcSIkx7R0Mk7P8IWQ6SDoz6swQ09tQOOpkBrsU80Bci3Y_IhfiNfLIwRz_ZzSR5-3_xb_Snu_97era7vi76SLBUlU0KXUFaQhwTdqFrnVUBp-tLotlKITCAoZZXRgqNtKy201VwBGGnKJbna5T4F_zxjTN00xB7HERz6OXYNV4xVSvwXipZz1coyw8t3cOPn4PInOiFEk4VkGX3foT74GAPa7ikME4Rtx1n3Wkv3VkumF_u8WU9ojnDfQwY_diDmI7fGcHzw4zAHaQ54CDuAF0ilolk</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Iwasa, Y</creator><creator>Kobayashi, S</creator><creator>Nishikawa, T</creator><creator>Takenobu, T</creator><creator>Mori, S</creator><creator>Shimoda, T</creator><creator>Mitani, T</creator><creator>Shimotani, H</creator><creator>Yoshimoto, N</creator><creator>Ogawa, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>Control of carrier density by self-assembled monolayers in organic field-effect transistors</title><author>Iwasa, Y ; Kobayashi, S ; Nishikawa, T ; Takenobu, T ; Mori, S ; Shimoda, T ; Mitani, T ; Shimotani, H ; Yoshimoto, N ; Ogawa, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-3092b3a34a2b36ab795bab72a3dc3db849ee02ea99f9db21ef84b2bfb19aad6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computer Simulation</topic><topic>Condensed Matter Physics</topic><topic>Crystallization - methods</topic><topic>Electric Conductivity</topic><topic>Electron Transport</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fluorine</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Optical and Electronic Materials</topic><topic>Organic Chemicals - chemistry</topic><topic>Silanes - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><topic>Thin films</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasa, Y</creatorcontrib><creatorcontrib>Kobayashi, S</creatorcontrib><creatorcontrib>Nishikawa, T</creatorcontrib><creatorcontrib>Takenobu, T</creatorcontrib><creatorcontrib>Mori, S</creatorcontrib><creatorcontrib>Shimoda, T</creatorcontrib><creatorcontrib>Mitani, T</creatorcontrib><creatorcontrib>Shimotani, H</creatorcontrib><creatorcontrib>Yoshimoto, N</creatorcontrib><creatorcontrib>Ogawa, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasa, Y</au><au>Kobayashi, S</au><au>Nishikawa, T</au><au>Takenobu, T</au><au>Mori, S</au><au>Shimoda, T</au><au>Mitani, T</au><au>Shimotani, H</au><au>Yoshimoto, N</au><au>Ogawa, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of carrier density by self-assembled monolayers in organic field-effect transistors</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>3</volume><issue>5</issue><spage>317</spage><epage>322</epage><pages>317-322</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has been crucial for the technological development of inorganic semiconductors. In the field-effect device structures, the conduction channel exists at the interface between organic thin films and SiO
2
gate insulators. Here, we discuss a new technique that enables us to control the charge density in the channel by using organosilane self-assembled monolayers (SAMs) on SiO
2
gate insulators. SAMs with fluorine and amino groups have been shown to accumulate holes and electrons, respectively, in the transistor channel: these properties are understood in terms of the effects of electric dipoles of the SAMs molecules, and weak charge transfer between organic films and SAMs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15064756</pmid><doi>10.1038/nmat1105</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2004-05, Vol.3 (5), p.317-322 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_71900492 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Biomaterials Chemistry and Materials Science Computer Simulation Condensed Matter Physics Crystallization - methods Electric Conductivity Electron Transport Equipment Design Equipment Failure Analysis Fluorine Materials Science Models, Molecular Molecular Conformation Nanotechnology Nanotechnology - instrumentation Nanotechnology - methods Optical and Electronic Materials Organic Chemicals - chemistry Silanes - chemistry Silicon Dioxide - chemistry Thin films Transistors, Electronic |
title | Control of carrier density by self-assembled monolayers in organic field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20carrier%20density%20by%20self-assembled%20monolayers%20in%20organic%20field-effect%20transistors&rft.jtitle=Nature%20materials&rft.au=Iwasa,%20Y&rft.date=2004-05-01&rft.volume=3&rft.issue=5&rft.spage=317&rft.epage=322&rft.pages=317-322&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1105&rft_dat=%3Cproquest_cross%3E71900492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222763360&rft_id=info:pmid/15064756&rfr_iscdi=true |