Mass spring lattice modeling of the scanning laser source technique

The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2002-06, Vol.39 (8), p.543-551
Hauptverfasser: Sohn, Younghoon, Krishnaswamy, Sridhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 8
container_start_page 543
container_title Ultrasonics
container_volume 39
creator Sohn, Younghoon
Krishnaswamy, Sridhar
description The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content have been observed for ultrasound generated by the laser over uniform and defective areas. In this paper, the SLS technique is simulated numerically using the mass spring lattice model. Thermoelastic laser generation of ultrasound in an elastic material is modeled using a shear dipole distribution. The spatial and temporal energy distribution profiles of typical pulsed laser sources are used to model the laser source. The amplitude and spectral variations in the laser generated ultrasound as the SLS scans over a large aluminum block containing a small surface-breaking crack are observed. The experimentally observed SLS amplitude and spectral signatures are shown to be captured very well by the model. In addition, the possibility of utilizing the SLS technique to size surface-breaking cracks that are sub-wavelength in depth is explored.
doi_str_mv 10.1016/S0041-624X(02)00250-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71895837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X02002500</els_id><sourcerecordid>71895837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3c2d79ab340336d4e594af8364a47682510419a828b11c91af249913eef0d6e13</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-BCUn0UN0ZneT7J5Eil9Q8aCCt2W7mdhImtTdRPDfmzZFj54GhmfmnXkYO0a4QMD08hlAYpxy-XYG_ByAJxDDDhujymSsdap22fgXGbGDED4AUCoU-2yEHEEnUo7Z9NGGEIWVL-v3qLJtWzqKlk1O1brRFFG7oCg4W9cDEMhHoel8T7XkFnX52dEh2ytsFehoWyfs9fbmZXofz57uHqbXs9iJFNtYOJ5n2s6FBCHSXFKipS2USKWVWap4gv252iqu5ohOoy241BoFUQF5Sigm7HTYu_JNHxtasyyDo6qyNTVdMBkqnSiR9WAygM43IXgqTP_f0vpvg2DW9szGnlmrMcDNxp6Bfu5kG9DNl5T_TW119cDVAFD_5ldJ3gRXUu0oLz251uRN-U_ED1eJffk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71895837</pqid></control><display><type>article</type><title>Mass spring lattice modeling of the scanning laser source technique</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sohn, Younghoon ; Krishnaswamy, Sridhar</creator><creatorcontrib>Sohn, Younghoon ; Krishnaswamy, Sridhar</creatorcontrib><description>The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content have been observed for ultrasound generated by the laser over uniform and defective areas. In this paper, the SLS technique is simulated numerically using the mass spring lattice model. Thermoelastic laser generation of ultrasound in an elastic material is modeled using a shear dipole distribution. The spatial and temporal energy distribution profiles of typical pulsed laser sources are used to model the laser source. The amplitude and spectral variations in the laser generated ultrasound as the SLS scans over a large aluminum block containing a small surface-breaking crack are observed. The experimentally observed SLS amplitude and spectral signatures are shown to be captured very well by the model. In addition, the possibility of utilizing the SLS technique to size surface-breaking cracks that are sub-wavelength in depth is explored.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(02)00250-0</identifier><identifier>PMID: 12109544</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aluminum ; Laser ultrasonics ; Lasers ; Mass spring lattice model ; Nondestructive testing ; Scanning laser source technique ; Surface-breaking cracks ; Ultrasonics</subject><ispartof>Ultrasonics, 2002-06, Vol.39 (8), p.543-551</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3c2d79ab340336d4e594af8364a47682510419a828b11c91af249913eef0d6e13</citedby><cites>FETCH-LOGICAL-c361t-3c2d79ab340336d4e594af8364a47682510419a828b11c91af249913eef0d6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(02)00250-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12109544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohn, Younghoon</creatorcontrib><creatorcontrib>Krishnaswamy, Sridhar</creatorcontrib><title>Mass spring lattice modeling of the scanning laser source technique</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content have been observed for ultrasound generated by the laser over uniform and defective areas. In this paper, the SLS technique is simulated numerically using the mass spring lattice model. Thermoelastic laser generation of ultrasound in an elastic material is modeled using a shear dipole distribution. The spatial and temporal energy distribution profiles of typical pulsed laser sources are used to model the laser source. The amplitude and spectral variations in the laser generated ultrasound as the SLS scans over a large aluminum block containing a small surface-breaking crack are observed. The experimentally observed SLS amplitude and spectral signatures are shown to be captured very well by the model. In addition, the possibility of utilizing the SLS technique to size surface-breaking cracks that are sub-wavelength in depth is explored.</description><subject>Aluminum</subject><subject>Laser ultrasonics</subject><subject>Lasers</subject><subject>Mass spring lattice model</subject><subject>Nondestructive testing</subject><subject>Scanning laser source technique</subject><subject>Surface-breaking cracks</subject><subject>Ultrasonics</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-BCUn0UN0ZneT7J5Eil9Q8aCCt2W7mdhImtTdRPDfmzZFj54GhmfmnXkYO0a4QMD08hlAYpxy-XYG_ByAJxDDDhujymSsdap22fgXGbGDED4AUCoU-2yEHEEnUo7Z9NGGEIWVL-v3qLJtWzqKlk1O1brRFFG7oCg4W9cDEMhHoel8T7XkFnX52dEh2ytsFehoWyfs9fbmZXofz57uHqbXs9iJFNtYOJ5n2s6FBCHSXFKipS2USKWVWap4gv252iqu5ohOoy241BoFUQF5Sigm7HTYu_JNHxtasyyDo6qyNTVdMBkqnSiR9WAygM43IXgqTP_f0vpvg2DW9szGnlmrMcDNxp6Bfu5kG9DNl5T_TW119cDVAFD_5ldJ3gRXUu0oLz251uRN-U_ED1eJffk</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Sohn, Younghoon</creator><creator>Krishnaswamy, Sridhar</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Mass spring lattice modeling of the scanning laser source technique</title><author>Sohn, Younghoon ; Krishnaswamy, Sridhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3c2d79ab340336d4e594af8364a47682510419a828b11c91af249913eef0d6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum</topic><topic>Laser ultrasonics</topic><topic>Lasers</topic><topic>Mass spring lattice model</topic><topic>Nondestructive testing</topic><topic>Scanning laser source technique</topic><topic>Surface-breaking cracks</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Younghoon</creatorcontrib><creatorcontrib>Krishnaswamy, Sridhar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Younghoon</au><au>Krishnaswamy, Sridhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spring lattice modeling of the scanning laser source technique</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>39</volume><issue>8</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content have been observed for ultrasound generated by the laser over uniform and defective areas. In this paper, the SLS technique is simulated numerically using the mass spring lattice model. Thermoelastic laser generation of ultrasound in an elastic material is modeled using a shear dipole distribution. The spatial and temporal energy distribution profiles of typical pulsed laser sources are used to model the laser source. The amplitude and spectral variations in the laser generated ultrasound as the SLS scans over a large aluminum block containing a small surface-breaking crack are observed. The experimentally observed SLS amplitude and spectral signatures are shown to be captured very well by the model. In addition, the possibility of utilizing the SLS technique to size surface-breaking cracks that are sub-wavelength in depth is explored.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>12109544</pmid><doi>10.1016/S0041-624X(02)00250-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2002-06, Vol.39 (8), p.543-551
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_71895837
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Aluminum
Laser ultrasonics
Lasers
Mass spring lattice model
Nondestructive testing
Scanning laser source technique
Surface-breaking cracks
Ultrasonics
title Mass spring lattice modeling of the scanning laser source technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spring%20lattice%20modeling%20of%20the%20scanning%20laser%20source%20technique&rft.jtitle=Ultrasonics&rft.au=Sohn,%20Younghoon&rft.date=2002-06-01&rft.volume=39&rft.issue=8&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/S0041-624X(02)00250-0&rft_dat=%3Cproquest_cross%3E71895837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71895837&rft_id=info:pmid/12109544&rft_els_id=S0041624X02002500&rfr_iscdi=true