Characterizing non-gaussian diffusion by using generalized diffusion tensors

Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2004-05, Vol.51 (5), p.924-937
Hauptverfasser: Liu, Chunlei, Bammer, Roland, Acar, Burak, Moseley, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 937
container_issue 5
container_start_page 924
container_title Magnetic resonance in medicine
container_volume 51
creator Liu, Chunlei
Bammer, Roland
Acar, Burak
Moseley, Michael E.
description Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.20071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71894570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71894570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujEUQP_gHDycTDQtttt9ujIYoaUKIYj013O4vV_cCWjcKvdxX8uBhPM8k875vMg9AhwT2CMe0XruhRjAXZQm3CKQ0ol2wbtbFgOAiJZC205_0TxlhKwXZRi3BCaSRYG40Gj9rpdAHOrmw565ZVGcx07b3VZdfYLKu9rcpusuw2S3OfQQlO53YF5td5AaWvnN9HO5nOPRxsZgfdn59NBxfB6GZ4OTgdBSmThAQszCJqUsrTLEtwLDXNkiSOjOEp51HEgKSCNS9IMCRmVFIeAjY8McASzUGHHXS87p276qUGv1CF9SnkuS6hqr0SJJaMC_wvSEQYy5jLBjxZg6mrvHeQqbmzhXZLRbD6cKwax-rTccMebUrrpADzQ26kNkB_DbzaHJZ_N6nx7firMlgnrF_A23dCu2cViVBw9XA9VFd3ZDoJJ0PFw3fVppYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17389859</pqid></control><display><type>article</type><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</creator><creatorcontrib>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</creatorcontrib><description>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20071</identifier><identifier>PMID: 15122674</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Anisotropy ; cumulants ; Diffusion ; diffusion tensor imaging ; fiber ; high angular resolution ; magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Models, Theoretical ; Monte Carlo Method ; Phantoms, Imaging ; probability density function</subject><ispartof>Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.924-937</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</citedby><cites>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15122674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Bammer, Roland</creatorcontrib><creatorcontrib>Acar, Burak</creatorcontrib><creatorcontrib>Moseley, Michael E.</creatorcontrib><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Anisotropy</subject><subject>cumulants</subject><subject>Diffusion</subject><subject>diffusion tensor imaging</subject><subject>fiber</subject><subject>high angular resolution</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>probability density function</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PAjEQhhujEUQP_gHDycTDQtttt9ujIYoaUKIYj013O4vV_cCWjcKvdxX8uBhPM8k875vMg9AhwT2CMe0XruhRjAXZQm3CKQ0ol2wbtbFgOAiJZC205_0TxlhKwXZRi3BCaSRYG40Gj9rpdAHOrmw565ZVGcx07b3VZdfYLKu9rcpusuw2S3OfQQlO53YF5td5AaWvnN9HO5nOPRxsZgfdn59NBxfB6GZ4OTgdBSmThAQszCJqUsrTLEtwLDXNkiSOjOEp51HEgKSCNS9IMCRmVFIeAjY8McASzUGHHXS87p276qUGv1CF9SnkuS6hqr0SJJaMC_wvSEQYy5jLBjxZg6mrvHeQqbmzhXZLRbD6cKwax-rTccMebUrrpADzQ26kNkB_DbzaHJZ_N6nx7firMlgnrF_A23dCu2cViVBw9XA9VFd3ZDoJJ0PFw3fVppYY</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Liu, Chunlei</creator><creator>Bammer, Roland</creator><creator>Acar, Burak</creator><creator>Moseley, Michael E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><author>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anisotropy</topic><topic>cumulants</topic><topic>Diffusion</topic><topic>diffusion tensor imaging</topic><topic>fiber</topic><topic>high angular resolution</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>probability density function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Bammer, Roland</creatorcontrib><creatorcontrib>Acar, Burak</creatorcontrib><creatorcontrib>Moseley, Michael E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chunlei</au><au>Bammer, Roland</au><au>Acar, Burak</au><au>Moseley, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing non-gaussian diffusion by using generalized diffusion tensors</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2004-05</date><risdate>2004</risdate><volume>51</volume><issue>5</issue><spage>924</spage><epage>937</epage><pages>924-937</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15122674</pmid><doi>10.1002/mrm.20071</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.924-937
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_71894570
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Anisotropy
cumulants
Diffusion
diffusion tensor imaging
fiber
high angular resolution
magnetic resonance imaging
Magnetic Resonance Spectroscopy
Models, Theoretical
Monte Carlo Method
Phantoms, Imaging
probability density function
title Characterizing non-gaussian diffusion by using generalized diffusion tensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20non-gaussian%20diffusion%20by%20using%20generalized%20diffusion%20tensors&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Liu,%20Chunlei&rft.date=2004-05&rft.volume=51&rft.issue=5&rft.spage=924&rft.epage=937&rft.pages=924-937&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20071&rft_dat=%3Cproquest_cross%3E71894570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17389859&rft_id=info:pmid/15122674&rfr_iscdi=true