Characterizing non-gaussian diffusion by using generalized diffusion tensors
Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2004-05, Vol.51 (5), p.924-937 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 937 |
---|---|
container_issue | 5 |
container_start_page | 924 |
container_title | Magnetic resonance in medicine |
container_volume | 51 |
creator | Liu, Chunlei Bammer, Roland Acar, Burak Moseley, Michael E. |
description | Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71894570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71894570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujEUQP_gHDycTDQtttt9ujIYoaUKIYj013O4vV_cCWjcKvdxX8uBhPM8k875vMg9AhwT2CMe0XruhRjAXZQm3CKQ0ol2wbtbFgOAiJZC205_0TxlhKwXZRi3BCaSRYG40Gj9rpdAHOrmw565ZVGcx07b3VZdfYLKu9rcpusuw2S3OfQQlO53YF5td5AaWvnN9HO5nOPRxsZgfdn59NBxfB6GZ4OTgdBSmThAQszCJqUsrTLEtwLDXNkiSOjOEp51HEgKSCNS9IMCRmVFIeAjY8McASzUGHHXS87p276qUGv1CF9SnkuS6hqr0SJJaMC_wvSEQYy5jLBjxZg6mrvHeQqbmzhXZLRbD6cKwax-rTccMebUrrpADzQ26kNkB_DbzaHJZ_N6nx7firMlgnrF_A23dCu2cViVBw9XA9VFd3ZDoJJ0PFw3fVppYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17389859</pqid></control><display><type>article</type><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</creator><creatorcontrib>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</creatorcontrib><description>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20071</identifier><identifier>PMID: 15122674</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Anisotropy ; cumulants ; Diffusion ; diffusion tensor imaging ; fiber ; high angular resolution ; magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Models, Theoretical ; Monte Carlo Method ; Phantoms, Imaging ; probability density function</subject><ispartof>Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.924-937</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</citedby><cites>FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15122674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Bammer, Roland</creatorcontrib><creatorcontrib>Acar, Burak</creatorcontrib><creatorcontrib>Moseley, Michael E.</creatorcontrib><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Anisotropy</subject><subject>cumulants</subject><subject>Diffusion</subject><subject>diffusion tensor imaging</subject><subject>fiber</subject><subject>high angular resolution</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>probability density function</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PAjEQhhujEUQP_gHDycTDQtttt9ujIYoaUKIYj013O4vV_cCWjcKvdxX8uBhPM8k875vMg9AhwT2CMe0XruhRjAXZQm3CKQ0ol2wbtbFgOAiJZC205_0TxlhKwXZRi3BCaSRYG40Gj9rpdAHOrmw565ZVGcx07b3VZdfYLKu9rcpusuw2S3OfQQlO53YF5td5AaWvnN9HO5nOPRxsZgfdn59NBxfB6GZ4OTgdBSmThAQszCJqUsrTLEtwLDXNkiSOjOEp51HEgKSCNS9IMCRmVFIeAjY8McASzUGHHXS87p276qUGv1CF9SnkuS6hqr0SJJaMC_wvSEQYy5jLBjxZg6mrvHeQqbmzhXZLRbD6cKwax-rTccMebUrrpADzQ26kNkB_DbzaHJZ_N6nx7firMlgnrF_A23dCu2cViVBw9XA9VFd3ZDoJJ0PFw3fVppYY</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Liu, Chunlei</creator><creator>Bammer, Roland</creator><creator>Acar, Burak</creator><creator>Moseley, Michael E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>Characterizing non-gaussian diffusion by using generalized diffusion tensors</title><author>Liu, Chunlei ; Bammer, Roland ; Acar, Burak ; Moseley, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4911-43f62dc25cffb089a2fbb86dd5c55664e1c742599ed18429253e0d5bde4ba5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anisotropy</topic><topic>cumulants</topic><topic>Diffusion</topic><topic>diffusion tensor imaging</topic><topic>fiber</topic><topic>high angular resolution</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>probability density function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Bammer, Roland</creatorcontrib><creatorcontrib>Acar, Burak</creatorcontrib><creatorcontrib>Moseley, Michael E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chunlei</au><au>Bammer, Roland</au><au>Acar, Burak</au><au>Moseley, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing non-gaussian diffusion by using generalized diffusion tensors</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2004-05</date><risdate>2004</risdate><volume>51</volume><issue>5</issue><spage>924</spage><epage>937</epage><pages>924-937</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Diffusion tensor imaging (DTI) is known to have a limited capability of resolving multiple fiber orientations within one voxel. This is mainly because the probability density function (PDF) for random spin displacement is non‐Gaussian in the confining environment of biological tissues and, thus, the modeling of self‐diffusion by a second‐order tensor breaks down. The statistical property of a non‐Gaussian diffusion process is characterized via the higher‐order tensor (HOT) coefficients by reconstructing the PDF of the random spin displacement. Those HOT coefficients can be determined by combining a series of complex diffusion‐weighted measurements. The signal equation for an MR diffusion experiment was investigated theoretically by generalizing Fick's law to a higher‐order partial differential equation (PDE) obtained via Kramers‐Moyal expansion. A relationship has been derived between the HOT coefficients of the PDE and the higher‐order cumulants of the random spin displacement. Monte‐Carlo simulations of diffusion in a restricted environment with different geometrical shapes were performed, and the strengths and weaknesses of both HOT and established diffusion analysis techniques were investigated. The generalized diffusion tensor formalism is capable of accurately resolving the underlying spin displacement for complex geometrical structures, of which neither conventional DTI nor diffusion‐weighted imaging at high angular resolution (HARD) is capable. The HOT method helps illuminate some of the restrictions that are characteristic of these other methods. Furthermore, a direct relationship between HOT and q‐space is also established. Magn Reson Med 51:924–937, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15122674</pmid><doi>10.1002/mrm.20071</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2004-05, Vol.51 (5), p.924-937 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_71894570 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Anisotropy cumulants Diffusion diffusion tensor imaging fiber high angular resolution magnetic resonance imaging Magnetic Resonance Spectroscopy Models, Theoretical Monte Carlo Method Phantoms, Imaging probability density function |
title | Characterizing non-gaussian diffusion by using generalized diffusion tensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20non-gaussian%20diffusion%20by%20using%20generalized%20diffusion%20tensors&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Liu,%20Chunlei&rft.date=2004-05&rft.volume=51&rft.issue=5&rft.spage=924&rft.epage=937&rft.pages=924-937&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20071&rft_dat=%3Cproquest_cross%3E71894570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17389859&rft_id=info:pmid/15122674&rfr_iscdi=true |