Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170
Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes...
Gespeichert in:
Veröffentlicht in: | Cell 2002-06, Vol.109 (7), p.873-885 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 885 |
---|---|
container_issue | 7 |
container_start_page | 873 |
container_title | Cell |
container_volume | 109 |
creator | Fukata, Masaki Watanabe, Takashi Noritake, Jun Nakagawa, Masato Yamaga, Masaki Kuroda, Shinya Matsuura, Yoshiharu Iwamatsu, Akihiro Perez, Franck Kaibuchi, Kozo |
description | Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization. |
doi_str_mv | 10.1016/S0092-8674(02)00800-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71889794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867402008000</els_id><sourcerecordid>71889794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCY8eJ4xWqIiiViiivteVXaFDaFDtG4u9J2wiWrGZz5t6Zg9AphisMOLt-AeAkzjNGL4BcAuQAMeyhIQbOYooZ2UfDX2SAjrz_gI5K0_QQDTDBXUhOh-jmWWocyZWJCqMpiQq5boOz0UOlXdMGFWrro3bhmvC-iKZPk_G8p2fTeYwZHKODUtbenvRzhN7ubl-L-3j2OJkW41msaUbaOJfUEKo5JUZhxihjRmUYciuptkmZykQSxcqEJ4SDMQYTlUIpSckVURonyQid73LXrvkM1rdiWXlt61qubBO8YDjPOeO0A9Md2N3vvbOlWLtqKd23wCA25sTWnNhoEUDE1pyAbu-sLwhqac3fVq-qA252gO3e_KqsE15XdqWtqZzVrTBN9U_FD3CKefc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71889794</pqid></control><display><type>article</type><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</creator><creatorcontrib>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</creatorcontrib><description>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(02)00800-0</identifier><identifier>PMID: 12110184</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - chemistry ; Actins - metabolism ; Animals ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cattle ; cdc42 GTP-Binding Protein - metabolism ; Cell Polarity ; Cell Size ; Cercopithecus aethiops ; COS Cells ; Macromolecular Substances ; Microscopy, Fluorescence ; Microtubule-Associated Proteins - metabolism ; Microtubules - chemistry ; Microtubules - metabolism ; Neoplasm Proteins ; Protein Binding ; Pseudopodia - chemistry ; Pseudopodia - metabolism ; rac1 GTP-Binding Protein - metabolism ; ras GTPase-Activating Proteins ; Vero Cells</subject><ispartof>Cell, 2002-06, Vol.109 (7), p.873-885</ispartof><rights>2002 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</citedby><cites>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867402008000$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12110184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukata, Masaki</creatorcontrib><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Noritake, Jun</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Yamaga, Masaki</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><creatorcontrib>Matsuura, Yoshiharu</creatorcontrib><creatorcontrib>Iwamatsu, Akihiro</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><title>Cell</title><addtitle>Cell</addtitle><description>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</description><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cattle</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Polarity</subject><subject>Cell Size</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Macromolecular Substances</subject><subject>Microscopy, Fluorescence</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - metabolism</subject><subject>Neoplasm Proteins</subject><subject>Protein Binding</subject><subject>Pseudopodia - chemistry</subject><subject>Pseudopodia - metabolism</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>ras GTPase-Activating Proteins</subject><subject>Vero Cells</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCY8eJ4xWqIiiViiivteVXaFDaFDtG4u9J2wiWrGZz5t6Zg9AphisMOLt-AeAkzjNGL4BcAuQAMeyhIQbOYooZ2UfDX2SAjrz_gI5K0_QQDTDBXUhOh-jmWWocyZWJCqMpiQq5boOz0UOlXdMGFWrro3bhmvC-iKZPk_G8p2fTeYwZHKODUtbenvRzhN7ubl-L-3j2OJkW41msaUbaOJfUEKo5JUZhxihjRmUYciuptkmZykQSxcqEJ4SDMQYTlUIpSckVURonyQid73LXrvkM1rdiWXlt61qubBO8YDjPOeO0A9Md2N3vvbOlWLtqKd23wCA25sTWnNhoEUDE1pyAbu-sLwhqac3fVq-qA252gO3e_KqsE15XdqWtqZzVrTBN9U_FD3CKefc</recordid><startdate>20020628</startdate><enddate>20020628</enddate><creator>Fukata, Masaki</creator><creator>Watanabe, Takashi</creator><creator>Noritake, Jun</creator><creator>Nakagawa, Masato</creator><creator>Yamaga, Masaki</creator><creator>Kuroda, Shinya</creator><creator>Matsuura, Yoshiharu</creator><creator>Iwamatsu, Akihiro</creator><creator>Perez, Franck</creator><creator>Kaibuchi, Kozo</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020628</creationdate><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><author>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cattle</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Polarity</topic><topic>Cell Size</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Macromolecular Substances</topic><topic>Microscopy, Fluorescence</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - metabolism</topic><topic>Neoplasm Proteins</topic><topic>Protein Binding</topic><topic>Pseudopodia - chemistry</topic><topic>Pseudopodia - metabolism</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>ras GTPase-Activating Proteins</topic><topic>Vero Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukata, Masaki</creatorcontrib><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Noritake, Jun</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Yamaga, Masaki</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><creatorcontrib>Matsuura, Yoshiharu</creatorcontrib><creatorcontrib>Iwamatsu, Akihiro</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukata, Masaki</au><au>Watanabe, Takashi</au><au>Noritake, Jun</au><au>Nakagawa, Masato</au><au>Yamaga, Masaki</au><au>Kuroda, Shinya</au><au>Matsuura, Yoshiharu</au><au>Iwamatsu, Akihiro</au><au>Perez, Franck</au><au>Kaibuchi, Kozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2002-06-28</date><risdate>2002</risdate><volume>109</volume><issue>7</issue><spage>873</spage><epage>885</epage><pages>873-885</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12110184</pmid><doi>10.1016/S0092-8674(02)00800-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2002-06, Vol.109 (7), p.873-885 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_71889794 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actins - chemistry Actins - metabolism Animals Carrier Proteins - genetics Carrier Proteins - metabolism Cattle cdc42 GTP-Binding Protein - metabolism Cell Polarity Cell Size Cercopithecus aethiops COS Cells Macromolecular Substances Microscopy, Fluorescence Microtubule-Associated Proteins - metabolism Microtubules - chemistry Microtubules - metabolism Neoplasm Proteins Protein Binding Pseudopodia - chemistry Pseudopodia - metabolism rac1 GTP-Binding Protein - metabolism ras GTPase-Activating Proteins Vero Cells |
title | Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rac1%20and%20Cdc42%20Capture%20Microtubules%20through%20IQGAP1%20and%20CLIP-170&rft.jtitle=Cell&rft.au=Fukata,%20Masaki&rft.date=2002-06-28&rft.volume=109&rft.issue=7&rft.spage=873&rft.epage=885&rft.pages=873-885&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(02)00800-0&rft_dat=%3Cproquest_cross%3E71889794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71889794&rft_id=info:pmid/12110184&rft_els_id=S0092867402008000&rfr_iscdi=true |