Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170

Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2002-06, Vol.109 (7), p.873-885
Hauptverfasser: Fukata, Masaki, Watanabe, Takashi, Noritake, Jun, Nakagawa, Masato, Yamaga, Masaki, Kuroda, Shinya, Matsuura, Yoshiharu, Iwamatsu, Akihiro, Perez, Franck, Kaibuchi, Kozo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 885
container_issue 7
container_start_page 873
container_title Cell
container_volume 109
creator Fukata, Masaki
Watanabe, Takashi
Noritake, Jun
Nakagawa, Masato
Yamaga, Masaki
Kuroda, Shinya
Matsuura, Yoshiharu
Iwamatsu, Akihiro
Perez, Franck
Kaibuchi, Kozo
description Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.
doi_str_mv 10.1016/S0092-8674(02)00800-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71889794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867402008000</els_id><sourcerecordid>71889794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCY8eJ4xWqIiiViiivteVXaFDaFDtG4u9J2wiWrGZz5t6Zg9AphisMOLt-AeAkzjNGL4BcAuQAMeyhIQbOYooZ2UfDX2SAjrz_gI5K0_QQDTDBXUhOh-jmWWocyZWJCqMpiQq5boOz0UOlXdMGFWrro3bhmvC-iKZPk_G8p2fTeYwZHKODUtbenvRzhN7ubl-L-3j2OJkW41msaUbaOJfUEKo5JUZhxihjRmUYciuptkmZykQSxcqEJ4SDMQYTlUIpSckVURonyQid73LXrvkM1rdiWXlt61qubBO8YDjPOeO0A9Md2N3vvbOlWLtqKd23wCA25sTWnNhoEUDE1pyAbu-sLwhqac3fVq-qA252gO3e_KqsE15XdqWtqZzVrTBN9U_FD3CKefc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71889794</pqid></control><display><type>article</type><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</creator><creatorcontrib>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</creatorcontrib><description>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(02)00800-0</identifier><identifier>PMID: 12110184</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - chemistry ; Actins - metabolism ; Animals ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cattle ; cdc42 GTP-Binding Protein - metabolism ; Cell Polarity ; Cell Size ; Cercopithecus aethiops ; COS Cells ; Macromolecular Substances ; Microscopy, Fluorescence ; Microtubule-Associated Proteins - metabolism ; Microtubules - chemistry ; Microtubules - metabolism ; Neoplasm Proteins ; Protein Binding ; Pseudopodia - chemistry ; Pseudopodia - metabolism ; rac1 GTP-Binding Protein - metabolism ; ras GTPase-Activating Proteins ; Vero Cells</subject><ispartof>Cell, 2002-06, Vol.109 (7), p.873-885</ispartof><rights>2002 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</citedby><cites>FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867402008000$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12110184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukata, Masaki</creatorcontrib><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Noritake, Jun</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Yamaga, Masaki</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><creatorcontrib>Matsuura, Yoshiharu</creatorcontrib><creatorcontrib>Iwamatsu, Akihiro</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><title>Cell</title><addtitle>Cell</addtitle><description>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</description><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cattle</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Polarity</subject><subject>Cell Size</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Macromolecular Substances</subject><subject>Microscopy, Fluorescence</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - metabolism</subject><subject>Neoplasm Proteins</subject><subject>Protein Binding</subject><subject>Pseudopodia - chemistry</subject><subject>Pseudopodia - metabolism</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>ras GTPase-Activating Proteins</subject><subject>Vero Cells</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCY8eJ4xWqIiiViiivteVXaFDaFDtG4u9J2wiWrGZz5t6Zg9AphisMOLt-AeAkzjNGL4BcAuQAMeyhIQbOYooZ2UfDX2SAjrz_gI5K0_QQDTDBXUhOh-jmWWocyZWJCqMpiQq5boOz0UOlXdMGFWrro3bhmvC-iKZPk_G8p2fTeYwZHKODUtbenvRzhN7ubl-L-3j2OJkW41msaUbaOJfUEKo5JUZhxihjRmUYciuptkmZykQSxcqEJ4SDMQYTlUIpSckVURonyQid73LXrvkM1rdiWXlt61qubBO8YDjPOeO0A9Md2N3vvbOlWLtqKd23wCA25sTWnNhoEUDE1pyAbu-sLwhqac3fVq-qA252gO3e_KqsE15XdqWtqZzVrTBN9U_FD3CKefc</recordid><startdate>20020628</startdate><enddate>20020628</enddate><creator>Fukata, Masaki</creator><creator>Watanabe, Takashi</creator><creator>Noritake, Jun</creator><creator>Nakagawa, Masato</creator><creator>Yamaga, Masaki</creator><creator>Kuroda, Shinya</creator><creator>Matsuura, Yoshiharu</creator><creator>Iwamatsu, Akihiro</creator><creator>Perez, Franck</creator><creator>Kaibuchi, Kozo</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020628</creationdate><title>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</title><author>Fukata, Masaki ; Watanabe, Takashi ; Noritake, Jun ; Nakagawa, Masato ; Yamaga, Masaki ; Kuroda, Shinya ; Matsuura, Yoshiharu ; Iwamatsu, Akihiro ; Perez, Franck ; Kaibuchi, Kozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a4d24c942db177477db6108ea4ce3f5a3a2b7f393290ddd12b50fa2f9b2bc133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cattle</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Polarity</topic><topic>Cell Size</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Macromolecular Substances</topic><topic>Microscopy, Fluorescence</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - metabolism</topic><topic>Neoplasm Proteins</topic><topic>Protein Binding</topic><topic>Pseudopodia - chemistry</topic><topic>Pseudopodia - metabolism</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>ras GTPase-Activating Proteins</topic><topic>Vero Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukata, Masaki</creatorcontrib><creatorcontrib>Watanabe, Takashi</creatorcontrib><creatorcontrib>Noritake, Jun</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Yamaga, Masaki</creatorcontrib><creatorcontrib>Kuroda, Shinya</creatorcontrib><creatorcontrib>Matsuura, Yoshiharu</creatorcontrib><creatorcontrib>Iwamatsu, Akihiro</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Kaibuchi, Kozo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukata, Masaki</au><au>Watanabe, Takashi</au><au>Noritake, Jun</au><au>Nakagawa, Masato</au><au>Yamaga, Masaki</au><au>Kuroda, Shinya</au><au>Matsuura, Yoshiharu</au><au>Iwamatsu, Akihiro</au><au>Perez, Franck</au><au>Kaibuchi, Kozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2002-06-28</date><risdate>2002</risdate><volume>109</volume><issue>7</issue><spage>873</spage><epage>885</epage><pages>873-885</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Linkage of microtubules to special cortical regions is essential for cell polarization. CLIP-170 binds to the growing ends of microtubules and plays pivotal roles in orientation. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts with CLIP-170. In Vero fibroblasts, IQGAP1 localizes at the polarized leading edge. Expression of carboxy-terminal fragment of IQGAP1, which includes the CLIP-170 binding region, delocalizes GFP-CLIP-170 from the tips of microtubules and alters the microtubule array. Activated Rac1/Cdc42, IQGAP1, and CLIP-170 form a tripartite complex. Furthermore, expression of an IQGAP1 mutant defective in Rac1/Cdc42 binding induces multiple leading edges. These results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12110184</pmid><doi>10.1016/S0092-8674(02)00800-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2002-06, Vol.109 (7), p.873-885
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_71889794
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actins - chemistry
Actins - metabolism
Animals
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cattle
cdc42 GTP-Binding Protein - metabolism
Cell Polarity
Cell Size
Cercopithecus aethiops
COS Cells
Macromolecular Substances
Microscopy, Fluorescence
Microtubule-Associated Proteins - metabolism
Microtubules - chemistry
Microtubules - metabolism
Neoplasm Proteins
Protein Binding
Pseudopodia - chemistry
Pseudopodia - metabolism
rac1 GTP-Binding Protein - metabolism
ras GTPase-Activating Proteins
Vero Cells
title Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rac1%20and%20Cdc42%20Capture%20Microtubules%20through%20IQGAP1%20and%20CLIP-170&rft.jtitle=Cell&rft.au=Fukata,%20Masaki&rft.date=2002-06-28&rft.volume=109&rft.issue=7&rft.spage=873&rft.epage=885&rft.pages=873-885&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(02)00800-0&rft_dat=%3Cproquest_cross%3E71889794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71889794&rft_id=info:pmid/12110184&rft_els_id=S0092867402008000&rfr_iscdi=true