Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs
To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe impla...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2002-07, Vol.132 (7), p.1929-1934 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1934 |
---|---|
container_issue | 7 |
container_start_page | 1929 |
container_title | The Journal of nutrition |
container_volume | 132 |
creator | Pencek, R. Richard Koyama, Yoshiharu Lacy, D. Brooks James, Freyja D. Fueger, Patrick T. Jabbour, Kareem Williams, Phillip E. Wasserman, David H. |
description | To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe implanted 17 d before an experiment. Protocols consisted of a basal (−30 to 0 min) and an experimental (0–90 min) period. An intraduodenal glucose infusion of 44 μmol/(kg · min) was initiated at t = 0 min. At t = 20 and 80 min, 3-O-[3H]methylglucose and L-[14C]glucose (L-Glc) were injected intraduodenally. Phloridzin, an inhibitor of the Na+/K+ ATP-dependent transporter (SGLT1), was infused from t = 60 to 90 min in the presence of a peripheral isoglycemic clamp. Net gut glucose output was 21.1 ± 3.0 μmol/(kg · min) from t = 0 to 60 min. Transporter-mediated glucose absorption was calculated using three approaches, which involved either direct measurements or indirect estimates of duodenal glucose analog radioactivities, to account for the assumptions and difficulties inherent to duodenal sampling. Values were essentially the same regardless of calculations used because transporter-mediated absorption was 89 ± 1%, 90 ± 2% and 91 ± 2% of net gut glucose output. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-Glc. We conclude that in dogs, transporter-mediated glucose absorption constitutes the vast majority of glucose absorbed from the gut and is required for passive glucose absorption. The method described here is applicable to investigation of the mechanisms of gut glucose absorption under a variety of nutritional, physiologic and pathophysiologic conditions. |
doi_str_mv | 10.1093/jn/132.7.1929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71886414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622152508</els_id><sourcerecordid>141619111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-ad37084ddacf60f3fd46a68648c70ae2c5ef68a023981b83cc5f53d4992e9e2c3</originalsourceid><addsrcrecordid>eNp10U9rFDEYBvBBFLtWj141CPY22_ybyeRY17YuVCy1PYds8qZmmU22SabgZ_HLmnUXKoKnMOQ3D2_ep2neEjwnWLLTdTgljM7FnEgqnzUz0nHS9gTj580MY0pbRvr-qHmV8xpjTLgcXjZHhGIpekFnza_bpEPexlQgtV_Bel3AorNVjmlbfAxomVH5Aeg6-Y1OP9FNnAqg6NB5KPVTB7sTN_Aw-VR_dDGha52zf4S_Q6pfhgK5-KBHdDlOJmZAPpT4J_zTGKPdoUUM2fg4ZfQ53ufXzQunxwxvDudxc3dxfrv40l59u1wuzq5awztRWm2ZwAO3VhvXY8ec5b3uh54PRmAN1HTg-kFjyuRAVgMzpnMds1xKCrJes-PmZJ-7TfFhqlOqjc8GxlEHqLMoQYaaRniFH_6B6zil-qSsiBScCiZpRe0emRRzTuDUdr87RbDaVabWQdXKlFC7yqp_dwidVhuwT_rQUQUfD0Bno0dXCzM-Pzk2dJTT3XTv987pqPR9qubuO62V1957juVQhdgLqNt89JBU3TYEU2tPYIqy0f9nyN8cIbwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197427392</pqid></control><display><type>article</type><title>Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D. ; Fueger, Patrick T. ; Jabbour, Kareem ; Williams, Phillip E. ; Wasserman, David H.</creator><creatorcontrib>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D. ; Fueger, Patrick T. ; Jabbour, Kareem ; Williams, Phillip E. ; Wasserman, David H.</creatorcontrib><description>To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe implanted 17 d before an experiment. Protocols consisted of a basal (−30 to 0 min) and an experimental (0–90 min) period. An intraduodenal glucose infusion of 44 μmol/(kg · min) was initiated at t = 0 min. At t = 20 and 80 min, 3-O-[3H]methylglucose and L-[14C]glucose (L-Glc) were injected intraduodenally. Phloridzin, an inhibitor of the Na+/K+ ATP-dependent transporter (SGLT1), was infused from t = 60 to 90 min in the presence of a peripheral isoglycemic clamp. Net gut glucose output was 21.1 ± 3.0 μmol/(kg · min) from t = 0 to 60 min. Transporter-mediated glucose absorption was calculated using three approaches, which involved either direct measurements or indirect estimates of duodenal glucose analog radioactivities, to account for the assumptions and difficulties inherent to duodenal sampling. Values were essentially the same regardless of calculations used because transporter-mediated absorption was 89 ± 1%, 90 ± 2% and 91 ± 2% of net gut glucose output. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-Glc. We conclude that in dogs, transporter-mediated glucose absorption constitutes the vast majority of glucose absorbed from the gut and is required for passive glucose absorption. The method described here is applicable to investigation of the mechanisms of gut glucose absorption under a variety of nutritional, physiologic and pathophysiologic conditions.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/132.7.1929</identifier><identifier>PMID: 12097672</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>3-O-Methylglucose - metabolism ; absorption ; animal models ; Animals ; Arteries ; Biological and medical sciences ; Blood ; blood glucose ; Blood Glucose - metabolism ; carbohydrate ; Carbohydrates ; Dogs ; duodenum ; Duodenum - metabolism ; Female ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - administration & dosage ; Glucose - pharmacokinetics ; Hormones - blood ; intestinal absorption ; Intestinal Absorption - drug effects ; Intestinal Absorption - physiology ; intestine ; Intestine. Mesentery ; Large intestine ; Liver - metabolism ; Male ; Metabolism ; Monosaccharide Transport Proteins - physiology ; Phlorhizin - pharmacology ; phloridzin ; portal vein ; Portal Vein - physiology ; Regional Blood Flow ; Small intestine ; vena cava ; Vertebrates: digestive system</subject><ispartof>The Journal of nutrition, 2002-07, Vol.132 (7), p.1929-1934</ispartof><rights>2002 American Society for Nutrition.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Nutrition Jul 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-ad37084ddacf60f3fd46a68648c70ae2c5ef68a023981b83cc5f53d4992e9e2c3</citedby><cites>FETCH-LOGICAL-c457t-ad37084ddacf60f3fd46a68648c70ae2c5ef68a023981b83cc5f53d4992e9e2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13852424$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12097672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencek, R. Richard</creatorcontrib><creatorcontrib>Koyama, Yoshiharu</creatorcontrib><creatorcontrib>Lacy, D. Brooks</creatorcontrib><creatorcontrib>James, Freyja D.</creatorcontrib><creatorcontrib>Fueger, Patrick T.</creatorcontrib><creatorcontrib>Jabbour, Kareem</creatorcontrib><creatorcontrib>Williams, Phillip E.</creatorcontrib><creatorcontrib>Wasserman, David H.</creatorcontrib><title>Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe implanted 17 d before an experiment. Protocols consisted of a basal (−30 to 0 min) and an experimental (0–90 min) period. An intraduodenal glucose infusion of 44 μmol/(kg · min) was initiated at t = 0 min. At t = 20 and 80 min, 3-O-[3H]methylglucose and L-[14C]glucose (L-Glc) were injected intraduodenally. Phloridzin, an inhibitor of the Na+/K+ ATP-dependent transporter (SGLT1), was infused from t = 60 to 90 min in the presence of a peripheral isoglycemic clamp. Net gut glucose output was 21.1 ± 3.0 μmol/(kg · min) from t = 0 to 60 min. Transporter-mediated glucose absorption was calculated using three approaches, which involved either direct measurements or indirect estimates of duodenal glucose analog radioactivities, to account for the assumptions and difficulties inherent to duodenal sampling. Values were essentially the same regardless of calculations used because transporter-mediated absorption was 89 ± 1%, 90 ± 2% and 91 ± 2% of net gut glucose output. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-Glc. We conclude that in dogs, transporter-mediated glucose absorption constitutes the vast majority of glucose absorbed from the gut and is required for passive glucose absorption. The method described here is applicable to investigation of the mechanisms of gut glucose absorption under a variety of nutritional, physiologic and pathophysiologic conditions.</description><subject>3-O-Methylglucose - metabolism</subject><subject>absorption</subject><subject>animal models</subject><subject>Animals</subject><subject>Arteries</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>carbohydrate</subject><subject>Carbohydrates</subject><subject>Dogs</subject><subject>duodenum</subject><subject>Duodenum - metabolism</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - administration & dosage</subject><subject>Glucose - pharmacokinetics</subject><subject>Hormones - blood</subject><subject>intestinal absorption</subject><subject>Intestinal Absorption - drug effects</subject><subject>Intestinal Absorption - physiology</subject><subject>intestine</subject><subject>Intestine. Mesentery</subject><subject>Large intestine</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Monosaccharide Transport Proteins - physiology</subject><subject>Phlorhizin - pharmacology</subject><subject>phloridzin</subject><subject>portal vein</subject><subject>Portal Vein - physiology</subject><subject>Regional Blood Flow</subject><subject>Small intestine</subject><subject>vena cava</subject><subject>Vertebrates: digestive system</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U9rFDEYBvBBFLtWj141CPY22_ybyeRY17YuVCy1PYds8qZmmU22SabgZ_HLmnUXKoKnMOQ3D2_ep2neEjwnWLLTdTgljM7FnEgqnzUz0nHS9gTj580MY0pbRvr-qHmV8xpjTLgcXjZHhGIpekFnza_bpEPexlQgtV_Bel3AorNVjmlbfAxomVH5Aeg6-Y1OP9FNnAqg6NB5KPVTB7sTN_Aw-VR_dDGha52zf4S_Q6pfhgK5-KBHdDlOJmZAPpT4J_zTGKPdoUUM2fg4ZfQ53ufXzQunxwxvDudxc3dxfrv40l59u1wuzq5awztRWm2ZwAO3VhvXY8ec5b3uh54PRmAN1HTg-kFjyuRAVgMzpnMds1xKCrJes-PmZJ-7TfFhqlOqjc8GxlEHqLMoQYaaRniFH_6B6zil-qSsiBScCiZpRe0emRRzTuDUdr87RbDaVabWQdXKlFC7yqp_dwidVhuwT_rQUQUfD0Bno0dXCzM-Pzk2dJTT3XTv987pqPR9qubuO62V1957juVQhdgLqNt89JBU3TYEU2tPYIqy0f9nyN8cIbwQ</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Pencek, R. Richard</creator><creator>Koyama, Yoshiharu</creator><creator>Lacy, D. Brooks</creator><creator>James, Freyja D.</creator><creator>Fueger, Patrick T.</creator><creator>Jabbour, Kareem</creator><creator>Williams, Phillip E.</creator><creator>Wasserman, David H.</creator><general>Elsevier Inc</general><general>American Society for Nutritional Sciences</general><general>American Institute of Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs</title><author>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D. ; Fueger, Patrick T. ; Jabbour, Kareem ; Williams, Phillip E. ; Wasserman, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-ad37084ddacf60f3fd46a68648c70ae2c5ef68a023981b83cc5f53d4992e9e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>3-O-Methylglucose - metabolism</topic><topic>absorption</topic><topic>animal models</topic><topic>Animals</topic><topic>Arteries</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>carbohydrate</topic><topic>Carbohydrates</topic><topic>Dogs</topic><topic>duodenum</topic><topic>Duodenum - metabolism</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - administration & dosage</topic><topic>Glucose - pharmacokinetics</topic><topic>Hormones - blood</topic><topic>intestinal absorption</topic><topic>Intestinal Absorption - drug effects</topic><topic>Intestinal Absorption - physiology</topic><topic>intestine</topic><topic>Intestine. Mesentery</topic><topic>Large intestine</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Monosaccharide Transport Proteins - physiology</topic><topic>Phlorhizin - pharmacology</topic><topic>phloridzin</topic><topic>portal vein</topic><topic>Portal Vein - physiology</topic><topic>Regional Blood Flow</topic><topic>Small intestine</topic><topic>vena cava</topic><topic>Vertebrates: digestive system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencek, R. Richard</creatorcontrib><creatorcontrib>Koyama, Yoshiharu</creatorcontrib><creatorcontrib>Lacy, D. Brooks</creatorcontrib><creatorcontrib>James, Freyja D.</creatorcontrib><creatorcontrib>Fueger, Patrick T.</creatorcontrib><creatorcontrib>Jabbour, Kareem</creatorcontrib><creatorcontrib>Williams, Phillip E.</creatorcontrib><creatorcontrib>Wasserman, David H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencek, R. Richard</au><au>Koyama, Yoshiharu</au><au>Lacy, D. Brooks</au><au>James, Freyja D.</au><au>Fueger, Patrick T.</au><au>Jabbour, Kareem</au><au>Williams, Phillip E.</au><au>Wasserman, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>132</volume><issue>7</issue><spage>1929</spage><epage>1934</epage><pages>1929-1934</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe implanted 17 d before an experiment. Protocols consisted of a basal (−30 to 0 min) and an experimental (0–90 min) period. An intraduodenal glucose infusion of 44 μmol/(kg · min) was initiated at t = 0 min. At t = 20 and 80 min, 3-O-[3H]methylglucose and L-[14C]glucose (L-Glc) were injected intraduodenally. Phloridzin, an inhibitor of the Na+/K+ ATP-dependent transporter (SGLT1), was infused from t = 60 to 90 min in the presence of a peripheral isoglycemic clamp. Net gut glucose output was 21.1 ± 3.0 μmol/(kg · min) from t = 0 to 60 min. Transporter-mediated glucose absorption was calculated using three approaches, which involved either direct measurements or indirect estimates of duodenal glucose analog radioactivities, to account for the assumptions and difficulties inherent to duodenal sampling. Values were essentially the same regardless of calculations used because transporter-mediated absorption was 89 ± 1%, 90 ± 2% and 91 ± 2% of net gut glucose output. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-Glc. We conclude that in dogs, transporter-mediated glucose absorption constitutes the vast majority of glucose absorbed from the gut and is required for passive glucose absorption. The method described here is applicable to investigation of the mechanisms of gut glucose absorption under a variety of nutritional, physiologic and pathophysiologic conditions.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>12097672</pmid><doi>10.1093/jn/132.7.1929</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3166 |
ispartof | The Journal of nutrition, 2002-07, Vol.132 (7), p.1929-1934 |
issn | 0022-3166 1541-6100 |
language | eng |
recordid | cdi_proquest_miscellaneous_71886414 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 3-O-Methylglucose - metabolism absorption animal models Animals Arteries Biological and medical sciences Blood blood glucose Blood Glucose - metabolism carbohydrate Carbohydrates Dogs duodenum Duodenum - metabolism Female Fundamental and applied biological sciences. Psychology Glucose Glucose - administration & dosage Glucose - pharmacokinetics Hormones - blood intestinal absorption Intestinal Absorption - drug effects Intestinal Absorption - physiology intestine Intestine. Mesentery Large intestine Liver - metabolism Male Metabolism Monosaccharide Transport Proteins - physiology Phlorhizin - pharmacology phloridzin portal vein Portal Vein - physiology Regional Blood Flow Small intestine vena cava Vertebrates: digestive system |
title | Transporter-Mediated Absorption Is the Primary Route of Entry and Is Required for Passive Absorption of Intestinal Glucose into the Blood of Conscious Dogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transporter-Mediated%20Absorption%20Is%20the%20Primary%20Route%20of%20Entry%20and%20Is%20Required%20for%20Passive%20Absorption%20of%20Intestinal%20Glucose%20into%20the%20Blood%20of%20Conscious%20Dogs&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Pencek,%20R.%20Richard&rft.date=2002-07-01&rft.volume=132&rft.issue=7&rft.spage=1929&rft.epage=1934&rft.pages=1929-1934&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/132.7.1929&rft_dat=%3Cproquest_cross%3E141619111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197427392&rft_id=info:pmid/12097672&rft_els_id=S0022316622152508&rfr_iscdi=true |