Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation

Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-07, Vol.99 (14), p.9145-9149
Hauptverfasser: Kuhn, Andreas N., Reichl, Elizabeth M., Brow, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9149
container_issue 14
container_start_page 9145
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Kuhn, Andreas N.
Reichl, Elizabeth M.
Brow, David A.
description Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activation of the spliceosome is thought to require unwinding of the U1 RNA/5′ splice site and U4/U6 RNA helices by the Prp28 and Prp44/Brr2 DExD/H-box helicases, respectively. Here we show that mutations in regions a, d, and e of Prp8 exhibit allele-specific genetic interactions with mutations in Prp28, Prp44/Brr2, and U6 RNA, respectively. These results indicate that Prp8 coordinates multiple processes in spliceosome activation and enable an initial correlation of Prp8 structure and function. Furthermore, additional genetic interactions with U4-cs1 support a two-state model for this RNA conformational switch and implicate another splicing factor, Prp31, in Prp8-mediated spliceosome activation.
doi_str_mv 10.1073/pnas.102304299
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71880040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3059166</jstor_id><sourcerecordid>3059166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-e3c69ff9677d9700d0ce97045578e3d7a4208ba796be73ea914f2b03a6864c043</originalsourceid><addsrcrecordid>eNqFks2LFDEQxYMo7rh69STSeNBTr5WP7iQHD8OOq8KKgnoTQiZdvWbo6bRJetH_3gwzzq4ieAgVqN8rXuqFkMcUzihI_nIabSo3xkEwre-QBQVN61ZouEsWAEzWSjBxQh6ktAEA3Si4T04oAyUpaxfk68qn7EeXq1XYWj-mKvTVp2nwzo9X1YV1OcTqY5xU9R47bzNWK9_3GHHM1TJN6PKNAkMKW6yWLvtrm30YH5J7vR0SPjrUU_Ll4vXn87f15Yc3786Xl7VrqM41ctfqvtetlJ2WAB04LFU0jVTIO2lFsbu2UrdrlBytpqJna-C2Va1wIPgpebWfO83rLXaumIt2MFP0Wxt_mmC9-bMz-m_mKlwbyjgFVfTPD_oYvs-Ystn65HAY7IhhTkZSpQAE_BekSnCmGC_gs7_ATZjjWJZgGFCuZTkFOttDLoaUIvZHxxTMLl2zS9cc0y2Cp7ffeYMf4izAiwOwE_5ua22oMGVrjennYcj4I98a9W-yAE_2wCaVL3AkODSati3_BU69wZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397139</pqid></control><display><type>article</type><title>Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kuhn, Andreas N. ; Reichl, Elizabeth M. ; Brow, David A.</creator><creatorcontrib>Kuhn, Andreas N. ; Reichl, Elizabeth M. ; Brow, David A.</creatorcontrib><description>Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activation of the spliceosome is thought to require unwinding of the U1 RNA/5′ splice site and U4/U6 RNA helices by the Prp28 and Prp44/Brr2 DExD/H-box helicases, respectively. Here we show that mutations in regions a, d, and e of Prp8 exhibit allele-specific genetic interactions with mutations in Prp28, Prp44/Brr2, and U6 RNA, respectively. These results indicate that Prp8 coordinates multiple processes in spliceosome activation and enable an initial correlation of Prp8 structure and function. Furthermore, additional genetic interactions with U4-cs1 support a two-state model for this RNA conformational switch and implicate another splicing factor, Prp31, in Prp8-mediated spliceosome activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.102304299</identifier><identifier>PMID: 12087126</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Amino Acid Sequence ; Amino acids ; Base Sequence ; Biochemistry ; Biological Sciences ; Cold Temperature ; DEAD-box RNA Helicases ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes ; Genetic mutation ; Medical genetics ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Structure, Tertiary ; Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Ribonucleic acid ; Ribonucleoprotein, U4-U6 Small Nuclear ; Ribonucleoprotein, U5 Small Nuclear ; RNA ; RNA Helicases ; RNA Nucleotidyltransferases - genetics ; RNA Nucleotidyltransferases - metabolism ; RNA Splicing ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Small Nuclear - genetics ; RNA, Small Nuclear - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology, Amino Acid ; Spliceosomes ; Spliceosomes - metabolism ; Splicing ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (14), p.9145-9149</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 9, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-e3c69ff9677d9700d0ce97045578e3d7a4208ba796be73ea914f2b03a6864c043</citedby><cites>FETCH-LOGICAL-c519t-e3c69ff9677d9700d0ce97045578e3d7a4208ba796be73ea914f2b03a6864c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3059166$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3059166$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12087126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, Andreas N.</creatorcontrib><creatorcontrib>Reichl, Elizabeth M.</creatorcontrib><creatorcontrib>Brow, David A.</creatorcontrib><title>Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activation of the spliceosome is thought to require unwinding of the U1 RNA/5′ splice site and U4/U6 RNA helices by the Prp28 and Prp44/Brr2 DExD/H-box helicases, respectively. Here we show that mutations in regions a, d, and e of Prp8 exhibit allele-specific genetic interactions with mutations in Prp28, Prp44/Brr2, and U6 RNA, respectively. These results indicate that Prp8 coordinates multiple processes in spliceosome activation and enable an initial correlation of Prp8 structure and function. Furthermore, additional genetic interactions with U4-cs1 support a two-state model for this RNA conformational switch and implicate another splicing factor, Prp31, in Prp8-mediated spliceosome activation.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cold Temperature</subject><subject>DEAD-box RNA Helicases</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>Medical genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plasmids</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein, U4-U6 Small Nuclear</subject><subject>Ribonucleoprotein, U5 Small Nuclear</subject><subject>RNA</subject><subject>RNA Helicases</subject><subject>RNA Nucleotidyltransferases - genetics</subject><subject>RNA Nucleotidyltransferases - metabolism</subject><subject>RNA Splicing</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA, Small Nuclear - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spliceosomes</subject><subject>Spliceosomes - metabolism</subject><subject>Splicing</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2LFDEQxYMo7rh69STSeNBTr5WP7iQHD8OOq8KKgnoTQiZdvWbo6bRJetH_3gwzzq4ieAgVqN8rXuqFkMcUzihI_nIabSo3xkEwre-QBQVN61ZouEsWAEzWSjBxQh6ktAEA3Si4T04oAyUpaxfk68qn7EeXq1XYWj-mKvTVp2nwzo9X1YV1OcTqY5xU9R47bzNWK9_3GHHM1TJN6PKNAkMKW6yWLvtrm30YH5J7vR0SPjrUU_Ll4vXn87f15Yc3786Xl7VrqM41ctfqvtetlJ2WAB04LFU0jVTIO2lFsbu2UrdrlBytpqJna-C2Va1wIPgpebWfO83rLXaumIt2MFP0Wxt_mmC9-bMz-m_mKlwbyjgFVfTPD_oYvs-Ystn65HAY7IhhTkZSpQAE_BekSnCmGC_gs7_ATZjjWJZgGFCuZTkFOttDLoaUIvZHxxTMLl2zS9cc0y2Cp7ffeYMf4izAiwOwE_5ua22oMGVrjennYcj4I98a9W-yAE_2wCaVL3AkODSati3_BU69wZI</recordid><startdate>20020709</startdate><enddate>20020709</enddate><creator>Kuhn, Andreas N.</creator><creator>Reichl, Elizabeth M.</creator><creator>Brow, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020709</creationdate><title>Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation</title><author>Kuhn, Andreas N. ; Reichl, Elizabeth M. ; Brow, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-e3c69ff9677d9700d0ce97045578e3d7a4208ba796be73ea914f2b03a6864c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cold Temperature</topic><topic>DEAD-box RNA Helicases</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>Medical genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plasmids</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein, U4-U6 Small Nuclear</topic><topic>Ribonucleoprotein, U5 Small Nuclear</topic><topic>RNA</topic><topic>RNA Helicases</topic><topic>RNA Nucleotidyltransferases - genetics</topic><topic>RNA Nucleotidyltransferases - metabolism</topic><topic>RNA Splicing</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA, Small Nuclear - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spliceosomes</topic><topic>Spliceosomes - metabolism</topic><topic>Splicing</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Andreas N.</creatorcontrib><creatorcontrib>Reichl, Elizabeth M.</creatorcontrib><creatorcontrib>Brow, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Andreas N.</au><au>Reichl, Elizabeth M.</au><au>Brow, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-07-09</date><risdate>2002</risdate><volume>99</volume><issue>14</issue><spage>9145</spage><epage>9149</epage><pages>9145-9149</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activation of the spliceosome is thought to require unwinding of the U1 RNA/5′ splice site and U4/U6 RNA helices by the Prp28 and Prp44/Brr2 DExD/H-box helicases, respectively. Here we show that mutations in regions a, d, and e of Prp8 exhibit allele-specific genetic interactions with mutations in Prp28, Prp44/Brr2, and U6 RNA, respectively. These results indicate that Prp8 coordinates multiple processes in spliceosome activation and enable an initial correlation of Prp8 structure and function. Furthermore, additional genetic interactions with U4-cs1 support a two-state model for this RNA conformational switch and implicate another splicing factor, Prp31, in Prp8-mediated spliceosome activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12087126</pmid><doi>10.1073/pnas.102304299</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (14), p.9145-9149
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_71880040
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Amino Acid Sequence
Amino acids
Base Sequence
Biochemistry
Biological Sciences
Cold Temperature
DEAD-box RNA Helicases
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes
Genetic mutation
Medical genetics
Molecular Sequence Data
Mutation
Plasmids
Protein Structure, Tertiary
Proteins
Repressor Proteins - genetics
Repressor Proteins - metabolism
Ribonucleic acid
Ribonucleoprotein, U4-U6 Small Nuclear
Ribonucleoprotein, U5 Small Nuclear
RNA
RNA Helicases
RNA Nucleotidyltransferases - genetics
RNA Nucleotidyltransferases - metabolism
RNA Splicing
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Small Nuclear - genetics
RNA, Small Nuclear - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology, Amino Acid
Spliceosomes
Spliceosomes - metabolism
Splicing
Yeasts
title Distinct Domains of Splicing Factor Prp8 Mediate Different Aspects of Spliceosome Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Domains%20of%20Splicing%20Factor%20Prp8%20Mediate%20Different%20Aspects%20of%20Spliceosome%20Activation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kuhn,%20Andreas%20N.&rft.date=2002-07-09&rft.volume=99&rft.issue=14&rft.spage=9145&rft.epage=9149&rft.pages=9145-9149&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.102304299&rft_dat=%3Cjstor_proqu%3E3059166%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397139&rft_id=info:pmid/12087126&rft_jstor_id=3059166&rfr_iscdi=true