In vitro engineering of heart muscle: Artificial myocardial tissue

Introduction: Myocardial infarction followed by heart failure represents one of the major causes of morbidity and mortality, particularly in industrialized countries. Engineering and subsequent transplantation of contractile artificial myocardial tissue and, consequently, the replacement of ischemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of thoracic and cardiovascular surgery 2002-07, Vol.124 (1), p.63-69
Hauptverfasser: Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H.P., Kraft, T., Leyh, R., Haverich, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 63
container_title The Journal of thoracic and cardiovascular surgery
container_volume 124
creator Kofidis, T.
Akhyari, P.
Boublik, J.
Theodorou, P.
Martin, U.
Ruhparwar, A.
Fischer, S.
Eschenhagen, T.
Kubis, H.P.
Kraft, T.
Leyh, R.
Haverich, A.
description Introduction: Myocardial infarction followed by heart failure represents one of the major causes of morbidity and mortality, particularly in industrialized countries. Engineering and subsequent transplantation of contractile artificial myocardial tissue and, consequently, the replacement of ischemic and infarcted areas of the heart provides a potential therapeutic alternative to whole organ transplantation. Methods: Artificial myocardial tissue samples were engineered by seeding neonatal rat cardiomyocytes with a commercially available 3-dimensional collagen matrix. The cellular engraftment within the artificial myocardial tissues was examined microscopically. Force development was analyzed in spontaneously beating artificial myocardial tissues, after stretching, and after pharmacologic stimulation. Moreover, electrocardiograms were recorded. Results: Artificial myocardial tissues showed continuous, rhythmic, and synchronized contractions for up to 13 weeks. Embedded cardiomyocytes were distributed equally within the 3-dimensional matrix. Application of Ca2+ and epinephrine, as well as electrical stimulation or stretching, resulted in enhanced force development. Electrocardiographic recording was possible on spontaneously beating artificial myocardial tissue samples and revealed physiologic patterns. Conclusions: Using a clinically well-established collagen matrix, contractile myocardial tissue can be engineered in vitro successfully. Mechanical and biologic properties of artificial myocardial tissue resemble native cardiac tissue. Use of artificial myocardial tissues might be a promising approach to reconstitute degenerated or failing cardiac tissue in many disease states and therefore provide a reasonable alternative to whole organ transplantation. J Thorac Cardiovasc Surg 2002;124:63-9
doi_str_mv 10.1067/mtc.2002.121971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71865223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022522302000417</els_id><sourcerecordid>71865223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ee2f8d3c58dfbf5fa9b2cde322af9b343e46ac9c45e79deb81ba1dd45027799b3</originalsourceid><addsrcrecordid>eNp1kD1rHDEQhkWIiS9O6nRhm7jbs0b7oVU62-TDYHCTQDqhHY3uZPbDkbQ2_vfRcgdXpRrBPPPy6mHsE_At8FZejQm3gnOxBQFKwhu2Aa5k2XbNn7dskxeibISoztn7GB8555KDesfOQXAFHfANu7mbimefwlzQtPMTUfDTrphdsScTUjEuEQf6WlyH5J1Hb4ZifJ3RBLs-k49xoQ_szJkh0sfjvGC_v3_7dfuzvH_4cXd7fV9iXTepJBKusxU2nXW9a5xRvUBLlRDGqb6qK6pbgwrrhqSy1HfQG7C2briQUmXigl0ecp_C_HehmPToI9IwmInmJWoJXbt-NoNXBxDDHGMgp5-CH0141cD1qk1nbXrVpg_a8sXnY_TSj2RP_NFTBr4cARPRDC6YCX08cVWX3Up16rj3u_2LD6TjaIYhx4J-TBhB1Bp0u3ZUB5CysWdPQUf0NCHZfIRJ29n_t-0_oZGW2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71865223</pqid></control><display><type>article</type><title>In vitro engineering of heart muscle: Artificial myocardial tissue</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kofidis, T. ; Akhyari, P. ; Boublik, J. ; Theodorou, P. ; Martin, U. ; Ruhparwar, A. ; Fischer, S. ; Eschenhagen, T. ; Kubis, H.P. ; Kraft, T. ; Leyh, R. ; Haverich, A.</creator><creatorcontrib>Kofidis, T. ; Akhyari, P. ; Boublik, J. ; Theodorou, P. ; Martin, U. ; Ruhparwar, A. ; Fischer, S. ; Eschenhagen, T. ; Kubis, H.P. ; Kraft, T. ; Leyh, R. ; Haverich, A.</creatorcontrib><description>Introduction: Myocardial infarction followed by heart failure represents one of the major causes of morbidity and mortality, particularly in industrialized countries. Engineering and subsequent transplantation of contractile artificial myocardial tissue and, consequently, the replacement of ischemic and infarcted areas of the heart provides a potential therapeutic alternative to whole organ transplantation. Methods: Artificial myocardial tissue samples were engineered by seeding neonatal rat cardiomyocytes with a commercially available 3-dimensional collagen matrix. The cellular engraftment within the artificial myocardial tissues was examined microscopically. Force development was analyzed in spontaneously beating artificial myocardial tissues, after stretching, and after pharmacologic stimulation. Moreover, electrocardiograms were recorded. Results: Artificial myocardial tissues showed continuous, rhythmic, and synchronized contractions for up to 13 weeks. Embedded cardiomyocytes were distributed equally within the 3-dimensional matrix. Application of Ca2+ and epinephrine, as well as electrical stimulation or stretching, resulted in enhanced force development. Electrocardiographic recording was possible on spontaneously beating artificial myocardial tissue samples and revealed physiologic patterns. Conclusions: Using a clinically well-established collagen matrix, contractile myocardial tissue can be engineered in vitro successfully. Mechanical and biologic properties of artificial myocardial tissue resemble native cardiac tissue. Use of artificial myocardial tissues might be a promising approach to reconstitute degenerated or failing cardiac tissue in many disease states and therefore provide a reasonable alternative to whole organ transplantation. J Thorac Cardiovasc Surg 2002;124:63-9</description><identifier>ISSN: 0022-5223</identifier><identifier>EISSN: 1097-685X</identifier><identifier>DOI: 10.1067/mtc.2002.121971</identifier><identifier>PMID: 12091810</identifier><identifier>CODEN: JTCSAQ</identifier><language>eng</language><publisher>Philadelphia, PA: Mosby, Inc</publisher><subject>Animals ; Animals, Newborn ; Biological and medical sciences ; Collagen ; Diseases of the cardiovascular system ; Electric Stimulation ; Electrocardiography ; Medical sciences ; Myocardial Contraction ; Myocardium - cytology ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Rats ; Rats, Wistar ; Tissue Engineering - methods</subject><ispartof>The Journal of thoracic and cardiovascular surgery, 2002-07, Vol.124 (1), p.63-69</ispartof><rights>2002 American Association for Thoracic Surgery</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ee2f8d3c58dfbf5fa9b2cde322af9b343e46ac9c45e79deb81ba1dd45027799b3</citedby><cites>FETCH-LOGICAL-c445t-ee2f8d3c58dfbf5fa9b2cde322af9b343e46ac9c45e79deb81ba1dd45027799b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022522302000417$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13800779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12091810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kofidis, T.</creatorcontrib><creatorcontrib>Akhyari, P.</creatorcontrib><creatorcontrib>Boublik, J.</creatorcontrib><creatorcontrib>Theodorou, P.</creatorcontrib><creatorcontrib>Martin, U.</creatorcontrib><creatorcontrib>Ruhparwar, A.</creatorcontrib><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Eschenhagen, T.</creatorcontrib><creatorcontrib>Kubis, H.P.</creatorcontrib><creatorcontrib>Kraft, T.</creatorcontrib><creatorcontrib>Leyh, R.</creatorcontrib><creatorcontrib>Haverich, A.</creatorcontrib><title>In vitro engineering of heart muscle: Artificial myocardial tissue</title><title>The Journal of thoracic and cardiovascular surgery</title><addtitle>J Thorac Cardiovasc Surg</addtitle><description>Introduction: Myocardial infarction followed by heart failure represents one of the major causes of morbidity and mortality, particularly in industrialized countries. Engineering and subsequent transplantation of contractile artificial myocardial tissue and, consequently, the replacement of ischemic and infarcted areas of the heart provides a potential therapeutic alternative to whole organ transplantation. Methods: Artificial myocardial tissue samples were engineered by seeding neonatal rat cardiomyocytes with a commercially available 3-dimensional collagen matrix. The cellular engraftment within the artificial myocardial tissues was examined microscopically. Force development was analyzed in spontaneously beating artificial myocardial tissues, after stretching, and after pharmacologic stimulation. Moreover, electrocardiograms were recorded. Results: Artificial myocardial tissues showed continuous, rhythmic, and synchronized contractions for up to 13 weeks. Embedded cardiomyocytes were distributed equally within the 3-dimensional matrix. Application of Ca2+ and epinephrine, as well as electrical stimulation or stretching, resulted in enhanced force development. Electrocardiographic recording was possible on spontaneously beating artificial myocardial tissue samples and revealed physiologic patterns. Conclusions: Using a clinically well-established collagen matrix, contractile myocardial tissue can be engineered in vitro successfully. Mechanical and biologic properties of artificial myocardial tissue resemble native cardiac tissue. Use of artificial myocardial tissues might be a promising approach to reconstitute degenerated or failing cardiac tissue in many disease states and therefore provide a reasonable alternative to whole organ transplantation. J Thorac Cardiovasc Surg 2002;124:63-9</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>Collagen</subject><subject>Diseases of the cardiovascular system</subject><subject>Electric Stimulation</subject><subject>Electrocardiography</subject><subject>Medical sciences</subject><subject>Myocardial Contraction</subject><subject>Myocardium - cytology</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Tissue Engineering - methods</subject><issn>0022-5223</issn><issn>1097-685X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1rHDEQhkWIiS9O6nRhm7jbs0b7oVU62-TDYHCTQDqhHY3uZPbDkbQ2_vfRcgdXpRrBPPPy6mHsE_At8FZejQm3gnOxBQFKwhu2Aa5k2XbNn7dskxeibISoztn7GB8555KDesfOQXAFHfANu7mbimefwlzQtPMTUfDTrphdsScTUjEuEQf6WlyH5J1Hb4ZifJ3RBLs-k49xoQ_szJkh0sfjvGC_v3_7dfuzvH_4cXd7fV9iXTepJBKusxU2nXW9a5xRvUBLlRDGqb6qK6pbgwrrhqSy1HfQG7C2briQUmXigl0ecp_C_HehmPToI9IwmInmJWoJXbt-NoNXBxDDHGMgp5-CH0141cD1qk1nbXrVpg_a8sXnY_TSj2RP_NFTBr4cARPRDC6YCX08cVWX3Up16rj3u_2LD6TjaIYhx4J-TBhB1Bp0u3ZUB5CysWdPQUf0NCHZfIRJ29n_t-0_oZGW2g</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Kofidis, T.</creator><creator>Akhyari, P.</creator><creator>Boublik, J.</creator><creator>Theodorou, P.</creator><creator>Martin, U.</creator><creator>Ruhparwar, A.</creator><creator>Fischer, S.</creator><creator>Eschenhagen, T.</creator><creator>Kubis, H.P.</creator><creator>Kraft, T.</creator><creator>Leyh, R.</creator><creator>Haverich, A.</creator><general>Mosby, Inc</general><general>AATS/WTSA</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>In vitro engineering of heart muscle: Artificial myocardial tissue</title><author>Kofidis, T. ; Akhyari, P. ; Boublik, J. ; Theodorou, P. ; Martin, U. ; Ruhparwar, A. ; Fischer, S. ; Eschenhagen, T. ; Kubis, H.P. ; Kraft, T. ; Leyh, R. ; Haverich, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ee2f8d3c58dfbf5fa9b2cde322af9b343e46ac9c45e79deb81ba1dd45027799b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>Collagen</topic><topic>Diseases of the cardiovascular system</topic><topic>Electric Stimulation</topic><topic>Electrocardiography</topic><topic>Medical sciences</topic><topic>Myocardial Contraction</topic><topic>Myocardium - cytology</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kofidis, T.</creatorcontrib><creatorcontrib>Akhyari, P.</creatorcontrib><creatorcontrib>Boublik, J.</creatorcontrib><creatorcontrib>Theodorou, P.</creatorcontrib><creatorcontrib>Martin, U.</creatorcontrib><creatorcontrib>Ruhparwar, A.</creatorcontrib><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Eschenhagen, T.</creatorcontrib><creatorcontrib>Kubis, H.P.</creatorcontrib><creatorcontrib>Kraft, T.</creatorcontrib><creatorcontrib>Leyh, R.</creatorcontrib><creatorcontrib>Haverich, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofidis, T.</au><au>Akhyari, P.</au><au>Boublik, J.</au><au>Theodorou, P.</au><au>Martin, U.</au><au>Ruhparwar, A.</au><au>Fischer, S.</au><au>Eschenhagen, T.</au><au>Kubis, H.P.</au><au>Kraft, T.</au><au>Leyh, R.</au><au>Haverich, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro engineering of heart muscle: Artificial myocardial tissue</atitle><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle><addtitle>J Thorac Cardiovasc Surg</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>124</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>0022-5223</issn><eissn>1097-685X</eissn><coden>JTCSAQ</coden><abstract>Introduction: Myocardial infarction followed by heart failure represents one of the major causes of morbidity and mortality, particularly in industrialized countries. Engineering and subsequent transplantation of contractile artificial myocardial tissue and, consequently, the replacement of ischemic and infarcted areas of the heart provides a potential therapeutic alternative to whole organ transplantation. Methods: Artificial myocardial tissue samples were engineered by seeding neonatal rat cardiomyocytes with a commercially available 3-dimensional collagen matrix. The cellular engraftment within the artificial myocardial tissues was examined microscopically. Force development was analyzed in spontaneously beating artificial myocardial tissues, after stretching, and after pharmacologic stimulation. Moreover, electrocardiograms were recorded. Results: Artificial myocardial tissues showed continuous, rhythmic, and synchronized contractions for up to 13 weeks. Embedded cardiomyocytes were distributed equally within the 3-dimensional matrix. Application of Ca2+ and epinephrine, as well as electrical stimulation or stretching, resulted in enhanced force development. Electrocardiographic recording was possible on spontaneously beating artificial myocardial tissue samples and revealed physiologic patterns. Conclusions: Using a clinically well-established collagen matrix, contractile myocardial tissue can be engineered in vitro successfully. Mechanical and biologic properties of artificial myocardial tissue resemble native cardiac tissue. Use of artificial myocardial tissues might be a promising approach to reconstitute degenerated or failing cardiac tissue in many disease states and therefore provide a reasonable alternative to whole organ transplantation. J Thorac Cardiovasc Surg 2002;124:63-9</abstract><cop>Philadelphia, PA</cop><pub>Mosby, Inc</pub><pmid>12091810</pmid><doi>10.1067/mtc.2002.121971</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5223
ispartof The Journal of thoracic and cardiovascular surgery, 2002-07, Vol.124 (1), p.63-69
issn 0022-5223
1097-685X
language eng
recordid cdi_proquest_miscellaneous_71865223
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Newborn
Biological and medical sciences
Collagen
Diseases of the cardiovascular system
Electric Stimulation
Electrocardiography
Medical sciences
Myocardial Contraction
Myocardium - cytology
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Rats
Rats, Wistar
Tissue Engineering - methods
title In vitro engineering of heart muscle: Artificial myocardial tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20engineering%20of%20heart%20muscle:%20Artificial%20myocardial%20tissue&rft.jtitle=The%20Journal%20of%20thoracic%20and%20cardiovascular%20surgery&rft.au=Kofidis,%20T.&rft.date=2002-07-01&rft.volume=124&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=0022-5223&rft.eissn=1097-685X&rft.coden=JTCSAQ&rft_id=info:doi/10.1067/mtc.2002.121971&rft_dat=%3Cproquest_cross%3E71865223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71865223&rft_id=info:pmid/12091810&rft_els_id=S0022522302000417&rfr_iscdi=true