Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies
: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegen...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2004-03, Vol.1012 (1), p.65-83 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1012 |
creator | SMITH, SOPHIA R. COOPERMAN, SHARON LAVAUTE, TIM TRESSER, NANCY GHOSH, MANIK MEYRON-HOLTZ, ESTHER LAND, WILLIAM OLLIVIERRE, HAYDEN JORTNER, BERNARD SWITZER III, ROBERT MESSING, ALBEE ROUAULT, TRACEY A. |
description | : In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration. |
doi_str_mv | 10.1196/annals.1306.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71862902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71862902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRi0EokvhzA3lxC3bGTuxk2PZQlupXVBbBJwsxzsphiQudtKyB_47XrKCIwfLGvm9T-OPsZcIS8RaHplhMF1cogC5BJCP2AJVUedSCv6YLQCUyquaiwP2LMZvAMirQj1lB1gilLyUC_brmu4puHGb-TZb0xT8hm5poGBG54ds5UOgzowUswc3fk1zfxd87yLt-POQkEsaTeM7F_vMpclZmtE_j1d0OyXdh232IfiREnFCrbOOhnTic_akTfvTi_19yD6-e3uzOssv3p-er44vciuUKvNGFi1J4haKDZUWeI0SgFA2yvK25AKRK2tquxFVXYDkStq2IlEQYoMoxSF7Peem5X9MFEedvmCp68xAfopaYSV5DTyBRzNog48xUKvvgutN2GoEvWtcz43rXeM6NZ6MV_voqelp84_fV5wAMQMPrqPt__L0-svxtSyTlc-WiyP9_GuZ8F1LJVSpP61PNaz4m8urzzdaid_sgp60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71862902</pqid></control><display><type>article</type><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</creator><creatorcontrib>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</creatorcontrib><description>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1196/annals.1306.006</identifier><identifier>PMID: 15105256</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Age Factors ; Animals ; axonopathy ; Axons - pathology ; Axons - ultrastructure ; Blotting, Western - methods ; Brain - anatomy & histology ; Brain - metabolism ; Brain - pathology ; Cell Count - methods ; Cells, Cultured ; Embryo, Mammalian ; ferritin ; Ferritins - metabolism ; Hand Strength - physiology ; Immunohistochemistry - methods ; iron ; Iron - metabolism ; Iron-Regulatory Proteins - blood ; Iron-Regulatory Proteins - deficiency ; Iron-Regulatory Proteins - genetics ; Iron-Regulatory Proteins - metabolism ; IRP ; Mice ; Mice, Knockout ; Microglia - metabolism ; Microscopy, Electron - methods ; Nerve Degeneration - metabolism ; Nerve Degeneration - pathology ; Nerve Degeneration - physiopathology ; neurodegeneration ; Neurons - metabolism ; Neurons - pathology ; Oligodendroglia - metabolism ; Oligodendroglia - pathology ; Receptors, Transferrin - metabolism ; Stem Cells ; substantia nigra ; Tyrosine 3-Monooxygenase - metabolism ; Ubiquitin - metabolism ; Vacuoles - pathology</subject><ispartof>Annals of the New York Academy of Sciences, 2004-03, Vol.1012 (1), p.65-83</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</citedby><cites>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1196%2Fannals.1306.006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1196%2Fannals.1306.006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15105256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SMITH, SOPHIA R.</creatorcontrib><creatorcontrib>COOPERMAN, SHARON</creatorcontrib><creatorcontrib>LAVAUTE, TIM</creatorcontrib><creatorcontrib>TRESSER, NANCY</creatorcontrib><creatorcontrib>GHOSH, MANIK</creatorcontrib><creatorcontrib>MEYRON-HOLTZ, ESTHER</creatorcontrib><creatorcontrib>LAND, WILLIAM</creatorcontrib><creatorcontrib>OLLIVIERRE, HAYDEN</creatorcontrib><creatorcontrib>JORTNER, BERNARD</creatorcontrib><creatorcontrib>SWITZER III, ROBERT</creatorcontrib><creatorcontrib>MESSING, ALBEE</creatorcontrib><creatorcontrib>ROUAULT, TRACEY A.</creatorcontrib><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</description><subject>Age Factors</subject><subject>Animals</subject><subject>axonopathy</subject><subject>Axons - pathology</subject><subject>Axons - ultrastructure</subject><subject>Blotting, Western - methods</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell Count - methods</subject><subject>Cells, Cultured</subject><subject>Embryo, Mammalian</subject><subject>ferritin</subject><subject>Ferritins - metabolism</subject><subject>Hand Strength - physiology</subject><subject>Immunohistochemistry - methods</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>Iron-Regulatory Proteins - blood</subject><subject>Iron-Regulatory Proteins - deficiency</subject><subject>Iron-Regulatory Proteins - genetics</subject><subject>Iron-Regulatory Proteins - metabolism</subject><subject>IRP</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia - metabolism</subject><subject>Microscopy, Electron - methods</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - pathology</subject><subject>Nerve Degeneration - physiopathology</subject><subject>neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - pathology</subject><subject>Receptors, Transferrin - metabolism</subject><subject>Stem Cells</subject><subject>substantia nigra</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Vacuoles - pathology</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQRi0EokvhzA3lxC3bGTuxk2PZQlupXVBbBJwsxzsphiQudtKyB_47XrKCIwfLGvm9T-OPsZcIS8RaHplhMF1cogC5BJCP2AJVUedSCv6YLQCUyquaiwP2LMZvAMirQj1lB1gilLyUC_brmu4puHGb-TZb0xT8hm5poGBG54ds5UOgzowUswc3fk1zfxd87yLt-POQkEsaTeM7F_vMpclZmtE_j1d0OyXdh232IfiREnFCrbOOhnTic_akTfvTi_19yD6-e3uzOssv3p-er44vciuUKvNGFi1J4haKDZUWeI0SgFA2yvK25AKRK2tquxFVXYDkStq2IlEQYoMoxSF7Peem5X9MFEedvmCp68xAfopaYSV5DTyBRzNog48xUKvvgutN2GoEvWtcz43rXeM6NZ6MV_voqelp84_fV5wAMQMPrqPt__L0-svxtSyTlc-WiyP9_GuZ8F1LJVSpP61PNaz4m8urzzdaid_sgp60</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>SMITH, SOPHIA R.</creator><creator>COOPERMAN, SHARON</creator><creator>LAVAUTE, TIM</creator><creator>TRESSER, NANCY</creator><creator>GHOSH, MANIK</creator><creator>MEYRON-HOLTZ, ESTHER</creator><creator>LAND, WILLIAM</creator><creator>OLLIVIERRE, HAYDEN</creator><creator>JORTNER, BERNARD</creator><creator>SWITZER III, ROBERT</creator><creator>MESSING, ALBEE</creator><creator>ROUAULT, TRACEY A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><author>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>axonopathy</topic><topic>Axons - pathology</topic><topic>Axons - ultrastructure</topic><topic>Blotting, Western - methods</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell Count - methods</topic><topic>Cells, Cultured</topic><topic>Embryo, Mammalian</topic><topic>ferritin</topic><topic>Ferritins - metabolism</topic><topic>Hand Strength - physiology</topic><topic>Immunohistochemistry - methods</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>Iron-Regulatory Proteins - blood</topic><topic>Iron-Regulatory Proteins - deficiency</topic><topic>Iron-Regulatory Proteins - genetics</topic><topic>Iron-Regulatory Proteins - metabolism</topic><topic>IRP</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia - metabolism</topic><topic>Microscopy, Electron - methods</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - pathology</topic><topic>Nerve Degeneration - physiopathology</topic><topic>neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - pathology</topic><topic>Receptors, Transferrin - metabolism</topic><topic>Stem Cells</topic><topic>substantia nigra</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Vacuoles - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMITH, SOPHIA R.</creatorcontrib><creatorcontrib>COOPERMAN, SHARON</creatorcontrib><creatorcontrib>LAVAUTE, TIM</creatorcontrib><creatorcontrib>TRESSER, NANCY</creatorcontrib><creatorcontrib>GHOSH, MANIK</creatorcontrib><creatorcontrib>MEYRON-HOLTZ, ESTHER</creatorcontrib><creatorcontrib>LAND, WILLIAM</creatorcontrib><creatorcontrib>OLLIVIERRE, HAYDEN</creatorcontrib><creatorcontrib>JORTNER, BERNARD</creatorcontrib><creatorcontrib>SWITZER III, ROBERT</creatorcontrib><creatorcontrib>MESSING, ALBEE</creatorcontrib><creatorcontrib>ROUAULT, TRACEY A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMITH, SOPHIA R.</au><au>COOPERMAN, SHARON</au><au>LAVAUTE, TIM</au><au>TRESSER, NANCY</au><au>GHOSH, MANIK</au><au>MEYRON-HOLTZ, ESTHER</au><au>LAND, WILLIAM</au><au>OLLIVIERRE, HAYDEN</au><au>JORTNER, BERNARD</au><au>SWITZER III, ROBERT</au><au>MESSING, ALBEE</au><au>ROUAULT, TRACEY A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2004-03</date><risdate>2004</risdate><volume>1012</volume><issue>1</issue><spage>65</spage><epage>83</epage><pages>65-83</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15105256</pmid><doi>10.1196/annals.1306.006</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2004-03, Vol.1012 (1), p.65-83 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_71862902 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Age Factors Animals axonopathy Axons - pathology Axons - ultrastructure Blotting, Western - methods Brain - anatomy & histology Brain - metabolism Brain - pathology Cell Count - methods Cells, Cultured Embryo, Mammalian ferritin Ferritins - metabolism Hand Strength - physiology Immunohistochemistry - methods iron Iron - metabolism Iron-Regulatory Proteins - blood Iron-Regulatory Proteins - deficiency Iron-Regulatory Proteins - genetics Iron-Regulatory Proteins - metabolism IRP Mice Mice, Knockout Microglia - metabolism Microscopy, Electron - methods Nerve Degeneration - metabolism Nerve Degeneration - pathology Nerve Degeneration - physiopathology neurodegeneration Neurons - metabolism Neurons - pathology Oligodendroglia - metabolism Oligodendroglia - pathology Receptors, Transferrin - metabolism Stem Cells substantia nigra Tyrosine 3-Monooxygenase - metabolism Ubiquitin - metabolism Vacuoles - pathology |
title | Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Severity%20of%20Neurodegeneration%20Correlates%20with%20Compromise%20of%20Iron%20Metabolism%20in%20Mice%20with%20Iron%20Regulatory%20Protein%20Deficiencies&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=SMITH,%20SOPHIA%20R.&rft.date=2004-03&rft.volume=1012&rft.issue=1&rft.spage=65&rft.epage=83&rft.pages=65-83&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1306.006&rft_dat=%3Cproquest_cross%3E71862902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71862902&rft_id=info:pmid/15105256&rfr_iscdi=true |