Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies

: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2004-03, Vol.1012 (1), p.65-83
Hauptverfasser: SMITH, SOPHIA R., COOPERMAN, SHARON, LAVAUTE, TIM, TRESSER, NANCY, GHOSH, MANIK, MEYRON-HOLTZ, ESTHER, LAND, WILLIAM, OLLIVIERRE, HAYDEN, JORTNER, BERNARD, SWITZER III, ROBERT, MESSING, ALBEE, ROUAULT, TRACEY A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 65
container_title Annals of the New York Academy of Sciences
container_volume 1012
creator SMITH, SOPHIA R.
COOPERMAN, SHARON
LAVAUTE, TIM
TRESSER, NANCY
GHOSH, MANIK
MEYRON-HOLTZ, ESTHER
LAND, WILLIAM
OLLIVIERRE, HAYDEN
JORTNER, BERNARD
SWITZER III, ROBERT
MESSING, ALBEE
ROUAULT, TRACEY A.
description : In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.
doi_str_mv 10.1196/annals.1306.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71862902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71862902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</originalsourceid><addsrcrecordid>eNqFkEFv1DAQRi0EokvhzA3lxC3bGTuxk2PZQlupXVBbBJwsxzsphiQudtKyB_47XrKCIwfLGvm9T-OPsZcIS8RaHplhMF1cogC5BJCP2AJVUedSCv6YLQCUyquaiwP2LMZvAMirQj1lB1gilLyUC_brmu4puHGb-TZb0xT8hm5poGBG54ds5UOgzowUswc3fk1zfxd87yLt-POQkEsaTeM7F_vMpclZmtE_j1d0OyXdh232IfiREnFCrbOOhnTic_akTfvTi_19yD6-e3uzOssv3p-er44vciuUKvNGFi1J4haKDZUWeI0SgFA2yvK25AKRK2tquxFVXYDkStq2IlEQYoMoxSF7Peem5X9MFEedvmCp68xAfopaYSV5DTyBRzNog48xUKvvgutN2GoEvWtcz43rXeM6NZ6MV_voqelp84_fV5wAMQMPrqPt__L0-svxtSyTlc-WiyP9_GuZ8F1LJVSpP61PNaz4m8urzzdaid_sgp60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71862902</pqid></control><display><type>article</type><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</creator><creatorcontrib>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</creatorcontrib><description>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1196/annals.1306.006</identifier><identifier>PMID: 15105256</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Age Factors ; Animals ; axonopathy ; Axons - pathology ; Axons - ultrastructure ; Blotting, Western - methods ; Brain - anatomy &amp; histology ; Brain - metabolism ; Brain - pathology ; Cell Count - methods ; Cells, Cultured ; Embryo, Mammalian ; ferritin ; Ferritins - metabolism ; Hand Strength - physiology ; Immunohistochemistry - methods ; iron ; Iron - metabolism ; Iron-Regulatory Proteins - blood ; Iron-Regulatory Proteins - deficiency ; Iron-Regulatory Proteins - genetics ; Iron-Regulatory Proteins - metabolism ; IRP ; Mice ; Mice, Knockout ; Microglia - metabolism ; Microscopy, Electron - methods ; Nerve Degeneration - metabolism ; Nerve Degeneration - pathology ; Nerve Degeneration - physiopathology ; neurodegeneration ; Neurons - metabolism ; Neurons - pathology ; Oligodendroglia - metabolism ; Oligodendroglia - pathology ; Receptors, Transferrin - metabolism ; Stem Cells ; substantia nigra ; Tyrosine 3-Monooxygenase - metabolism ; Ubiquitin - metabolism ; Vacuoles - pathology</subject><ispartof>Annals of the New York Academy of Sciences, 2004-03, Vol.1012 (1), p.65-83</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</citedby><cites>FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1196%2Fannals.1306.006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1196%2Fannals.1306.006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15105256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SMITH, SOPHIA R.</creatorcontrib><creatorcontrib>COOPERMAN, SHARON</creatorcontrib><creatorcontrib>LAVAUTE, TIM</creatorcontrib><creatorcontrib>TRESSER, NANCY</creatorcontrib><creatorcontrib>GHOSH, MANIK</creatorcontrib><creatorcontrib>MEYRON-HOLTZ, ESTHER</creatorcontrib><creatorcontrib>LAND, WILLIAM</creatorcontrib><creatorcontrib>OLLIVIERRE, HAYDEN</creatorcontrib><creatorcontrib>JORTNER, BERNARD</creatorcontrib><creatorcontrib>SWITZER III, ROBERT</creatorcontrib><creatorcontrib>MESSING, ALBEE</creatorcontrib><creatorcontrib>ROUAULT, TRACEY A.</creatorcontrib><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</description><subject>Age Factors</subject><subject>Animals</subject><subject>axonopathy</subject><subject>Axons - pathology</subject><subject>Axons - ultrastructure</subject><subject>Blotting, Western - methods</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell Count - methods</subject><subject>Cells, Cultured</subject><subject>Embryo, Mammalian</subject><subject>ferritin</subject><subject>Ferritins - metabolism</subject><subject>Hand Strength - physiology</subject><subject>Immunohistochemistry - methods</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>Iron-Regulatory Proteins - blood</subject><subject>Iron-Regulatory Proteins - deficiency</subject><subject>Iron-Regulatory Proteins - genetics</subject><subject>Iron-Regulatory Proteins - metabolism</subject><subject>IRP</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia - metabolism</subject><subject>Microscopy, Electron - methods</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - pathology</subject><subject>Nerve Degeneration - physiopathology</subject><subject>neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - pathology</subject><subject>Receptors, Transferrin - metabolism</subject><subject>Stem Cells</subject><subject>substantia nigra</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Vacuoles - pathology</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQRi0EokvhzA3lxC3bGTuxk2PZQlupXVBbBJwsxzsphiQudtKyB_47XrKCIwfLGvm9T-OPsZcIS8RaHplhMF1cogC5BJCP2AJVUedSCv6YLQCUyquaiwP2LMZvAMirQj1lB1gilLyUC_brmu4puHGb-TZb0xT8hm5poGBG54ds5UOgzowUswc3fk1zfxd87yLt-POQkEsaTeM7F_vMpclZmtE_j1d0OyXdh232IfiREnFCrbOOhnTic_akTfvTi_19yD6-e3uzOssv3p-er44vciuUKvNGFi1J4haKDZUWeI0SgFA2yvK25AKRK2tquxFVXYDkStq2IlEQYoMoxSF7Peem5X9MFEedvmCp68xAfopaYSV5DTyBRzNog48xUKvvgutN2GoEvWtcz43rXeM6NZ6MV_voqelp84_fV5wAMQMPrqPt__L0-svxtSyTlc-WiyP9_GuZ8F1LJVSpP61PNaz4m8urzzdaid_sgp60</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>SMITH, SOPHIA R.</creator><creator>COOPERMAN, SHARON</creator><creator>LAVAUTE, TIM</creator><creator>TRESSER, NANCY</creator><creator>GHOSH, MANIK</creator><creator>MEYRON-HOLTZ, ESTHER</creator><creator>LAND, WILLIAM</creator><creator>OLLIVIERRE, HAYDEN</creator><creator>JORTNER, BERNARD</creator><creator>SWITZER III, ROBERT</creator><creator>MESSING, ALBEE</creator><creator>ROUAULT, TRACEY A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</title><author>SMITH, SOPHIA R. ; COOPERMAN, SHARON ; LAVAUTE, TIM ; TRESSER, NANCY ; GHOSH, MANIK ; MEYRON-HOLTZ, ESTHER ; LAND, WILLIAM ; OLLIVIERRE, HAYDEN ; JORTNER, BERNARD ; SWITZER III, ROBERT ; MESSING, ALBEE ; ROUAULT, TRACEY A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3775-b64fe6e2c04de5c0291600e16b7c2f5231127ca9cd389406276cf8e34e11b1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>axonopathy</topic><topic>Axons - pathology</topic><topic>Axons - ultrastructure</topic><topic>Blotting, Western - methods</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell Count - methods</topic><topic>Cells, Cultured</topic><topic>Embryo, Mammalian</topic><topic>ferritin</topic><topic>Ferritins - metabolism</topic><topic>Hand Strength - physiology</topic><topic>Immunohistochemistry - methods</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>Iron-Regulatory Proteins - blood</topic><topic>Iron-Regulatory Proteins - deficiency</topic><topic>Iron-Regulatory Proteins - genetics</topic><topic>Iron-Regulatory Proteins - metabolism</topic><topic>IRP</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia - metabolism</topic><topic>Microscopy, Electron - methods</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - pathology</topic><topic>Nerve Degeneration - physiopathology</topic><topic>neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - pathology</topic><topic>Receptors, Transferrin - metabolism</topic><topic>Stem Cells</topic><topic>substantia nigra</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Vacuoles - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMITH, SOPHIA R.</creatorcontrib><creatorcontrib>COOPERMAN, SHARON</creatorcontrib><creatorcontrib>LAVAUTE, TIM</creatorcontrib><creatorcontrib>TRESSER, NANCY</creatorcontrib><creatorcontrib>GHOSH, MANIK</creatorcontrib><creatorcontrib>MEYRON-HOLTZ, ESTHER</creatorcontrib><creatorcontrib>LAND, WILLIAM</creatorcontrib><creatorcontrib>OLLIVIERRE, HAYDEN</creatorcontrib><creatorcontrib>JORTNER, BERNARD</creatorcontrib><creatorcontrib>SWITZER III, ROBERT</creatorcontrib><creatorcontrib>MESSING, ALBEE</creatorcontrib><creatorcontrib>ROUAULT, TRACEY A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMITH, SOPHIA R.</au><au>COOPERMAN, SHARON</au><au>LAVAUTE, TIM</au><au>TRESSER, NANCY</au><au>GHOSH, MANIK</au><au>MEYRON-HOLTZ, ESTHER</au><au>LAND, WILLIAM</au><au>OLLIVIERRE, HAYDEN</au><au>JORTNER, BERNARD</au><au>SWITZER III, ROBERT</au><au>MESSING, ALBEE</au><au>ROUAULT, TRACEY A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2004-03</date><risdate>2004</risdate><volume>1012</volume><issue>1</issue><spage>65</spage><epage>83</epage><pages>65-83</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>: In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult‐onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/− IRP2−/−) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2−/− and IRP1+/− IRP2−/− mouse models of neurodegeneration.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15105256</pmid><doi>10.1196/annals.1306.006</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2004-03, Vol.1012 (1), p.65-83
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_71862902
source MEDLINE; Access via Wiley Online Library
subjects Age Factors
Animals
axonopathy
Axons - pathology
Axons - ultrastructure
Blotting, Western - methods
Brain - anatomy & histology
Brain - metabolism
Brain - pathology
Cell Count - methods
Cells, Cultured
Embryo, Mammalian
ferritin
Ferritins - metabolism
Hand Strength - physiology
Immunohistochemistry - methods
iron
Iron - metabolism
Iron-Regulatory Proteins - blood
Iron-Regulatory Proteins - deficiency
Iron-Regulatory Proteins - genetics
Iron-Regulatory Proteins - metabolism
IRP
Mice
Mice, Knockout
Microglia - metabolism
Microscopy, Electron - methods
Nerve Degeneration - metabolism
Nerve Degeneration - pathology
Nerve Degeneration - physiopathology
neurodegeneration
Neurons - metabolism
Neurons - pathology
Oligodendroglia - metabolism
Oligodendroglia - pathology
Receptors, Transferrin - metabolism
Stem Cells
substantia nigra
Tyrosine 3-Monooxygenase - metabolism
Ubiquitin - metabolism
Vacuoles - pathology
title Severity of Neurodegeneration Correlates with Compromise of Iron Metabolism in Mice with Iron Regulatory Protein Deficiencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Severity%20of%20Neurodegeneration%20Correlates%20with%20Compromise%20of%20Iron%20Metabolism%20in%20Mice%20with%20Iron%20Regulatory%20Protein%20Deficiencies&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=SMITH,%20SOPHIA%20R.&rft.date=2004-03&rft.volume=1012&rft.issue=1&rft.spage=65&rft.epage=83&rft.pages=65-83&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1306.006&rft_dat=%3Cproquest_cross%3E71862902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71862902&rft_id=info:pmid/15105256&rfr_iscdi=true