The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells

A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-06, Vol.277 (26), p.23934-23941
Hauptverfasser: Ziros, Panos G., Gil, Andrea-Paola Rojas, Georgakopoulos, Tassos, Habeos, Ioannis, Kletsas, Dimitris, Basdra, Efthimia K., Papavassiliou, Athanasios G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23941
container_issue 26
container_start_page 23934
container_title The Journal of biological chemistry
container_volume 277
creator Ziros, Panos G.
Gil, Andrea-Paola Rojas
Georgakopoulos, Tassos
Habeos, Ioannis
Kletsas, Dimitris
Basdra, Efthimia K.
Papavassiliou, Athanasios G.
description A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expression patterns. Accumulated data have documented the fundamental role of the osteoblast-specific transcription factor Cbfa1 (core-binding factor) in osteoblast differentiation and function. Here, we demonstrate that low level mechanical deformation (stretching) of human osteoblastic cells directly up-regulates the expression and DNA binding activity of Cbfa1. This effect seems to be fine tuned by stretch-triggered induction of distinct mitogen-activated protein kinase cascades. Our novel finding that activated extracellular signal-regulated kinase mitogen-activated protein kinase physically interacts and phosphorylates endogenous Cbfa1 in vivo (ultimately potentiating this transcription factor) provides a molecular link between mechanostressing and stimulation of osteoblast differentiation. Elucidation of the specific modifiers and cofactors that operate in this mechanotranscription circuitry will contribute to a better understanding of mechanical load-induced bone formation which may set the basis for nonpharmacological intervention in bone loss pathologies.
doi_str_mv 10.1074/jbc.M109881200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71860984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819667815</els_id><sourcerecordid>18411622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-c15fc2f1a203b81f566940841e9f78eb4854736831b184eccedd33b9195e3b23</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EakPplSPyAXHb4LH3wz5CREulVpXaPXCzbGecdbVZB3tTxH-Po0TqqcKXOfj3nt7MI-QjsCWwrv76ZN3yDpiSEjhjb8gCmBSVaODXW7JgjEOleCPPyfucn1h5tYIzcg6g2qJhCxL6Aen3OGGVd-iCD472yUzZpbCbQ5zMSB9wsx_NHBNdWW-A3mRqaG_SBmcaPb1DN5gpuEI-hk0RZBomep9njHY0eS6OKxzH_IG88-UTL0_zgvRXP_rVz-r2_vpm9e22cg1r58pB4x33YDgTVoJv2lbVTNaAyncSbS2buhOtFGBB1ugcrtdCWAWqQWG5uCBfjra7FH_vMc96G7IrAcyEcZ91B_Kwev1fsLgDtPzguDyCLsWcE3q9S2Fr0l8NTB9K0KUE_VJCEXw6Oe_tFtcv-OnqBfh8BIawGf6EhNqG6Abcat51mreaCyUOCeURw3Ku54BJZxdwKhsXiZv1OobXIvwD3hqgWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18411622</pqid></control><display><type>article</type><title>The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ziros, Panos G. ; Gil, Andrea-Paola Rojas ; Georgakopoulos, Tassos ; Habeos, Ioannis ; Kletsas, Dimitris ; Basdra, Efthimia K. ; Papavassiliou, Athanasios G.</creator><creatorcontrib>Ziros, Panos G. ; Gil, Andrea-Paola Rojas ; Georgakopoulos, Tassos ; Habeos, Ioannis ; Kletsas, Dimitris ; Basdra, Efthimia K. ; Papavassiliou, Athanasios G.</creatorcontrib><description>A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expression patterns. Accumulated data have documented the fundamental role of the osteoblast-specific transcription factor Cbfa1 (core-binding factor) in osteoblast differentiation and function. Here, we demonstrate that low level mechanical deformation (stretching) of human osteoblastic cells directly up-regulates the expression and DNA binding activity of Cbfa1. This effect seems to be fine tuned by stretch-triggered induction of distinct mitogen-activated protein kinase cascades. Our novel finding that activated extracellular signal-regulated kinase mitogen-activated protein kinase physically interacts and phosphorylates endogenous Cbfa1 in vivo (ultimately potentiating this transcription factor) provides a molecular link between mechanostressing and stimulation of osteoblast differentiation. Elucidation of the specific modifiers and cofactors that operate in this mechanotranscription circuitry will contribute to a better understanding of mechanical load-induced bone formation which may set the basis for nonpharmacological intervention in bone loss pathologies.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109881200</identifier><identifier>PMID: 11960980</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cells, Cultured ; Core Binding Factor Alpha 1 Subunit ; Core Binding Factors ; DNA - metabolism ; Humans ; Mitogen-Activated Protein Kinases - physiology ; Neoplasm Proteins ; Osteoblasts - physiology ; Phosphorylation ; RNA, Messenger - analysis ; Space life sciences ; Stress, Mechanical ; Transcription Factor AP-1 - metabolism ; Transcription Factors - genetics ; Transcription Factors - physiology</subject><ispartof>The Journal of biological chemistry, 2002-06, Vol.277 (26), p.23934-23941</ispartof><rights>2002 © 2002 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-c15fc2f1a203b81f566940841e9f78eb4854736831b184eccedd33b9195e3b23</citedby><cites>FETCH-LOGICAL-c506t-c15fc2f1a203b81f566940841e9f78eb4854736831b184eccedd33b9195e3b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11960980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziros, Panos G.</creatorcontrib><creatorcontrib>Gil, Andrea-Paola Rojas</creatorcontrib><creatorcontrib>Georgakopoulos, Tassos</creatorcontrib><creatorcontrib>Habeos, Ioannis</creatorcontrib><creatorcontrib>Kletsas, Dimitris</creatorcontrib><creatorcontrib>Basdra, Efthimia K.</creatorcontrib><creatorcontrib>Papavassiliou, Athanasios G.</creatorcontrib><title>The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expression patterns. Accumulated data have documented the fundamental role of the osteoblast-specific transcription factor Cbfa1 (core-binding factor) in osteoblast differentiation and function. Here, we demonstrate that low level mechanical deformation (stretching) of human osteoblastic cells directly up-regulates the expression and DNA binding activity of Cbfa1. This effect seems to be fine tuned by stretch-triggered induction of distinct mitogen-activated protein kinase cascades. Our novel finding that activated extracellular signal-regulated kinase mitogen-activated protein kinase physically interacts and phosphorylates endogenous Cbfa1 in vivo (ultimately potentiating this transcription factor) provides a molecular link between mechanostressing and stimulation of osteoblast differentiation. Elucidation of the specific modifiers and cofactors that operate in this mechanotranscription circuitry will contribute to a better understanding of mechanical load-induced bone formation which may set the basis for nonpharmacological intervention in bone loss pathologies.</description><subject>Cells, Cultured</subject><subject>Core Binding Factor Alpha 1 Subunit</subject><subject>Core Binding Factors</subject><subject>DNA - metabolism</subject><subject>Humans</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>Neoplasm Proteins</subject><subject>Osteoblasts - physiology</subject><subject>Phosphorylation</subject><subject>RNA, Messenger - analysis</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EakPplSPyAXHb4LH3wz5CREulVpXaPXCzbGecdbVZB3tTxH-Po0TqqcKXOfj3nt7MI-QjsCWwrv76ZN3yDpiSEjhjb8gCmBSVaODXW7JgjEOleCPPyfucn1h5tYIzcg6g2qJhCxL6Aen3OGGVd-iCD472yUzZpbCbQ5zMSB9wsx_NHBNdWW-A3mRqaG_SBmcaPb1DN5gpuEI-hk0RZBomep9njHY0eS6OKxzH_IG88-UTL0_zgvRXP_rVz-r2_vpm9e22cg1r58pB4x33YDgTVoJv2lbVTNaAyncSbS2buhOtFGBB1ugcrtdCWAWqQWG5uCBfjra7FH_vMc96G7IrAcyEcZ91B_Kwev1fsLgDtPzguDyCLsWcE3q9S2Fr0l8NTB9K0KUE_VJCEXw6Oe_tFtcv-OnqBfh8BIawGf6EhNqG6Abcat51mreaCyUOCeURw3Ku54BJZxdwKhsXiZv1OobXIvwD3hqgWQ</recordid><startdate>20020628</startdate><enddate>20020628</enddate><creator>Ziros, Panos G.</creator><creator>Gil, Andrea-Paola Rojas</creator><creator>Georgakopoulos, Tassos</creator><creator>Habeos, Ioannis</creator><creator>Kletsas, Dimitris</creator><creator>Basdra, Efthimia K.</creator><creator>Papavassiliou, Athanasios G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20020628</creationdate><title>The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells</title><author>Ziros, Panos G. ; Gil, Andrea-Paola Rojas ; Georgakopoulos, Tassos ; Habeos, Ioannis ; Kletsas, Dimitris ; Basdra, Efthimia K. ; Papavassiliou, Athanasios G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-c15fc2f1a203b81f566940841e9f78eb4854736831b184eccedd33b9195e3b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cells, Cultured</topic><topic>Core Binding Factor Alpha 1 Subunit</topic><topic>Core Binding Factors</topic><topic>DNA - metabolism</topic><topic>Humans</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>Neoplasm Proteins</topic><topic>Osteoblasts - physiology</topic><topic>Phosphorylation</topic><topic>RNA, Messenger - analysis</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziros, Panos G.</creatorcontrib><creatorcontrib>Gil, Andrea-Paola Rojas</creatorcontrib><creatorcontrib>Georgakopoulos, Tassos</creatorcontrib><creatorcontrib>Habeos, Ioannis</creatorcontrib><creatorcontrib>Kletsas, Dimitris</creatorcontrib><creatorcontrib>Basdra, Efthimia K.</creatorcontrib><creatorcontrib>Papavassiliou, Athanasios G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziros, Panos G.</au><au>Gil, Andrea-Paola Rojas</au><au>Georgakopoulos, Tassos</au><au>Habeos, Ioannis</au><au>Kletsas, Dimitris</au><au>Basdra, Efthimia K.</au><au>Papavassiliou, Athanasios G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2002-06-28</date><risdate>2002</risdate><volume>277</volume><issue>26</issue><spage>23934</spage><epage>23941</epage><pages>23934-23941</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expression patterns. Accumulated data have documented the fundamental role of the osteoblast-specific transcription factor Cbfa1 (core-binding factor) in osteoblast differentiation and function. Here, we demonstrate that low level mechanical deformation (stretching) of human osteoblastic cells directly up-regulates the expression and DNA binding activity of Cbfa1. This effect seems to be fine tuned by stretch-triggered induction of distinct mitogen-activated protein kinase cascades. Our novel finding that activated extracellular signal-regulated kinase mitogen-activated protein kinase physically interacts and phosphorylates endogenous Cbfa1 in vivo (ultimately potentiating this transcription factor) provides a molecular link between mechanostressing and stimulation of osteoblast differentiation. Elucidation of the specific modifiers and cofactors that operate in this mechanotranscription circuitry will contribute to a better understanding of mechanical load-induced bone formation which may set the basis for nonpharmacological intervention in bone loss pathologies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11960980</pmid><doi>10.1074/jbc.M109881200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2002-06, Vol.277 (26), p.23934-23941
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_71860984
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Cells, Cultured
Core Binding Factor Alpha 1 Subunit
Core Binding Factors
DNA - metabolism
Humans
Mitogen-Activated Protein Kinases - physiology
Neoplasm Proteins
Osteoblasts - physiology
Phosphorylation
RNA, Messenger - analysis
Space life sciences
Stress, Mechanical
Transcription Factor AP-1 - metabolism
Transcription Factors - genetics
Transcription Factors - physiology
title The Bone-specific Transcriptional Regulator Cbfa1 Is a Target of Mechanical Signals in Osteoblastic Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bone-specific%20Transcriptional%20Regulator%20Cbfa1%20Is%20a%20Target%20of%20Mechanical%20Signals%20in%20Osteoblastic%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ziros,%20Panos%20G.&rft.date=2002-06-28&rft.volume=277&rft.issue=26&rft.spage=23934&rft.epage=23941&rft.pages=23934-23941&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109881200&rft_dat=%3Cproquest_cross%3E18411622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18411622&rft_id=info:pmid/11960980&rft_els_id=S0021925819667815&rfr_iscdi=true