Optimal design of experiments with anticipated pattern of missing observations

We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2004-05, Vol.228 (2), p.251-260
Hauptverfasser: Imhof, Lorens A., Song, Dale, Wong, Weng Kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 251
container_title Journal of theoretical biology
container_volume 228
creator Imhof, Lorens A.
Song, Dale
Wong, Weng Kee
description We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.
doi_str_mv 10.1016/j.jtbi.2004.01.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71849773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304000293</els_id><sourcerecordid>71849773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJraEcxzHicSCKr6kii4wW45zKY7SJNhugX-PSyuxsfis03Ov7h5CLikkFGh-0yatr0ySAmQJ0AQgPSJTCiWPC57RYzINnTTmtGQTcuZcCwBlxvJTMqE8_ICWU_KyHL1Zqy6q0ZlVHw1NhF8jWrPG3rvo0_j3SPXeaDMqj3UUXo_2l1sb50y_iobKod0qb4benZOTRnUOLw51Rt4e7l_nT_Fi-fg8v1vEmvHUx1yzJq9EhowBKsF1wZEXOm84NgiFSqHJKswZpApqQSFjglZCK44lo1Ut2Ixc73NHO3xs0HkZttHYdarHYeOkoEVWCsECmO5BbQfnLDZyDLcp-y0pyJ1F2cqdRbmzKIHK4CwMXR3SN9Ua67-Rg7YA3O4BDDduDVrptMFeY20sai_rwfyX_wOOeoRt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71849773</pqid></control><display><type>article</type><title>Optimal design of experiments with anticipated pattern of missing observations</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</creator><creatorcontrib>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</creatorcontrib><description>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.01.002</identifier><identifier>PMID: 15094019</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Approximate designs ; D-optimality ; Data Collection ; Data Interpretation, Statistical ; E-optimality ; Extrapolation designs ; Michaelis–Menten model ; Missing observations ; Models, Statistical ; Observation ; Research Design</subject><ispartof>Journal of theoretical biology, 2004-05, Vol.228 (2), p.251-260</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</citedby><cites>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2004.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15094019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imhof, Lorens A.</creatorcontrib><creatorcontrib>Song, Dale</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><title>Optimal design of experiments with anticipated pattern of missing observations</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</description><subject>Approximate designs</subject><subject>D-optimality</subject><subject>Data Collection</subject><subject>Data Interpretation, Statistical</subject><subject>E-optimality</subject><subject>Extrapolation designs</subject><subject>Michaelis–Menten model</subject><subject>Missing observations</subject><subject>Models, Statistical</subject><subject>Observation</subject><subject>Research Design</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJraEcxzHicSCKr6kii4wW45zKY7SJNhugX-PSyuxsfis03Ov7h5CLikkFGh-0yatr0ySAmQJ0AQgPSJTCiWPC57RYzINnTTmtGQTcuZcCwBlxvJTMqE8_ICWU_KyHL1Zqy6q0ZlVHw1NhF8jWrPG3rvo0_j3SPXeaDMqj3UUXo_2l1sb50y_iobKod0qb4benZOTRnUOLw51Rt4e7l_nT_Fi-fg8v1vEmvHUx1yzJq9EhowBKsF1wZEXOm84NgiFSqHJKswZpApqQSFjglZCK44lo1Ut2Ixc73NHO3xs0HkZttHYdarHYeOkoEVWCsECmO5BbQfnLDZyDLcp-y0pyJ1F2cqdRbmzKIHK4CwMXR3SN9Ua67-Rg7YA3O4BDDduDVrptMFeY20sai_rwfyX_wOOeoRt</recordid><startdate>20040521</startdate><enddate>20040521</enddate><creator>Imhof, Lorens A.</creator><creator>Song, Dale</creator><creator>Wong, Weng Kee</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040521</creationdate><title>Optimal design of experiments with anticipated pattern of missing observations</title><author>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximate designs</topic><topic>D-optimality</topic><topic>Data Collection</topic><topic>Data Interpretation, Statistical</topic><topic>E-optimality</topic><topic>Extrapolation designs</topic><topic>Michaelis–Menten model</topic><topic>Missing observations</topic><topic>Models, Statistical</topic><topic>Observation</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imhof, Lorens A.</creatorcontrib><creatorcontrib>Song, Dale</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imhof, Lorens A.</au><au>Song, Dale</au><au>Wong, Weng Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of experiments with anticipated pattern of missing observations</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-05-21</date><risdate>2004</risdate><volume>228</volume><issue>2</issue><spage>251</spage><epage>260</epage><pages>251-260</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15094019</pmid><doi>10.1016/j.jtbi.2004.01.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2004-05, Vol.228 (2), p.251-260
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_71849773
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Approximate designs
D-optimality
Data Collection
Data Interpretation, Statistical
E-optimality
Extrapolation designs
Michaelis–Menten model
Missing observations
Models, Statistical
Observation
Research Design
title Optimal design of experiments with anticipated pattern of missing observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20experiments%20with%20anticipated%20pattern%20of%20missing%20observations&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Imhof,%20Lorens%20A.&rft.date=2004-05-21&rft.volume=228&rft.issue=2&rft.spage=251&rft.epage=260&rft.pages=251-260&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.01.002&rft_dat=%3Cproquest_cross%3E71849773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71849773&rft_id=info:pmid/15094019&rft_els_id=S0022519304000293&rfr_iscdi=true