Optimal design of experiments with anticipated pattern of missing observations
We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2004-05, Vol.228 (2), p.251-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | Journal of theoretical biology |
container_volume | 228 |
creator | Imhof, Lorens A. Song, Dale Wong, Weng Kee |
description | We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions. |
doi_str_mv | 10.1016/j.jtbi.2004.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71849773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304000293</els_id><sourcerecordid>71849773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJraEcxzHicSCKr6kii4wW45zKY7SJNhugX-PSyuxsfis03Ov7h5CLikkFGh-0yatr0ySAmQJ0AQgPSJTCiWPC57RYzINnTTmtGQTcuZcCwBlxvJTMqE8_ICWU_KyHL1Zqy6q0ZlVHw1NhF8jWrPG3rvo0_j3SPXeaDMqj3UUXo_2l1sb50y_iobKod0qb4benZOTRnUOLw51Rt4e7l_nT_Fi-fg8v1vEmvHUx1yzJq9EhowBKsF1wZEXOm84NgiFSqHJKswZpApqQSFjglZCK44lo1Ut2Ixc73NHO3xs0HkZttHYdarHYeOkoEVWCsECmO5BbQfnLDZyDLcp-y0pyJ1F2cqdRbmzKIHK4CwMXR3SN9Ua67-Rg7YA3O4BDDduDVrptMFeY20sai_rwfyX_wOOeoRt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71849773</pqid></control><display><type>article</type><title>Optimal design of experiments with anticipated pattern of missing observations</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</creator><creatorcontrib>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</creatorcontrib><description>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.01.002</identifier><identifier>PMID: 15094019</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Approximate designs ; D-optimality ; Data Collection ; Data Interpretation, Statistical ; E-optimality ; Extrapolation designs ; Michaelis–Menten model ; Missing observations ; Models, Statistical ; Observation ; Research Design</subject><ispartof>Journal of theoretical biology, 2004-05, Vol.228 (2), p.251-260</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</citedby><cites>FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2004.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15094019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imhof, Lorens A.</creatorcontrib><creatorcontrib>Song, Dale</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><title>Optimal design of experiments with anticipated pattern of missing observations</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</description><subject>Approximate designs</subject><subject>D-optimality</subject><subject>Data Collection</subject><subject>Data Interpretation, Statistical</subject><subject>E-optimality</subject><subject>Extrapolation designs</subject><subject>Michaelis–Menten model</subject><subject>Missing observations</subject><subject>Models, Statistical</subject><subject>Observation</subject><subject>Research Design</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJraEcxzHicSCKr6kii4wW45zKY7SJNhugX-PSyuxsfis03Ov7h5CLikkFGh-0yatr0ySAmQJ0AQgPSJTCiWPC57RYzINnTTmtGQTcuZcCwBlxvJTMqE8_ICWU_KyHL1Zqy6q0ZlVHw1NhF8jWrPG3rvo0_j3SPXeaDMqj3UUXo_2l1sb50y_iobKod0qb4benZOTRnUOLw51Rt4e7l_nT_Fi-fg8v1vEmvHUx1yzJq9EhowBKsF1wZEXOm84NgiFSqHJKswZpApqQSFjglZCK44lo1Ut2Ixc73NHO3xs0HkZttHYdarHYeOkoEVWCsECmO5BbQfnLDZyDLcp-y0pyJ1F2cqdRbmzKIHK4CwMXR3SN9Ua67-Rg7YA3O4BDDduDVrptMFeY20sai_rwfyX_wOOeoRt</recordid><startdate>20040521</startdate><enddate>20040521</enddate><creator>Imhof, Lorens A.</creator><creator>Song, Dale</creator><creator>Wong, Weng Kee</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040521</creationdate><title>Optimal design of experiments with anticipated pattern of missing observations</title><author>Imhof, Lorens A. ; Song, Dale ; Wong, Weng Kee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5c3f6b74e330ea75c85e58c6f5efe08a20f4be6302a0d7104371b7ca5e931bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximate designs</topic><topic>D-optimality</topic><topic>Data Collection</topic><topic>Data Interpretation, Statistical</topic><topic>E-optimality</topic><topic>Extrapolation designs</topic><topic>Michaelis–Menten model</topic><topic>Missing observations</topic><topic>Models, Statistical</topic><topic>Observation</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imhof, Lorens A.</creatorcontrib><creatorcontrib>Song, Dale</creatorcontrib><creatorcontrib>Wong, Weng Kee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imhof, Lorens A.</au><au>Song, Dale</au><au>Wong, Weng Kee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of experiments with anticipated pattern of missing observations</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-05-21</date><risdate>2004</risdate><volume>228</volume><issue>2</issue><spage>251</spage><epage>260</epage><pages>251-260</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We propose a general method of designing an experiment when there are potentially failing trials. We use polynomial models and the Michaelis–Menten model as examples and construct different types of optimal designs under a broad class of response probability functions. We show that the usual optimal designs, that assume all observations are available at the end of the experiment, can be quite inefficient if the anticipated missingness pattern is not accounted for at the design stage. We also investigate robustness properties of the proposed designs to specification of their nominal values and the response probability functions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15094019</pmid><doi>10.1016/j.jtbi.2004.01.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2004-05, Vol.228 (2), p.251-260 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_71849773 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Approximate designs D-optimality Data Collection Data Interpretation, Statistical E-optimality Extrapolation designs Michaelis–Menten model Missing observations Models, Statistical Observation Research Design |
title | Optimal design of experiments with anticipated pattern of missing observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20experiments%20with%20anticipated%20pattern%20of%20missing%20observations&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Imhof,%20Lorens%20A.&rft.date=2004-05-21&rft.volume=228&rft.issue=2&rft.spage=251&rft.epage=260&rft.pages=251-260&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.01.002&rft_dat=%3Cproquest_cross%3E71849773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71849773&rft_id=info:pmid/15094019&rft_els_id=S0022519304000293&rfr_iscdi=true |