Estimation of second order rate constants using chemometric methods with kinetic constraints

Several methods are described for determining rate constants for second order reactions of the form U + V --> W using chemometrics and hard modelling to analyse UV absorption spectroscopic data, where all species absorb with comparable concentrations and extinctions. An interesting feature of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2002-05, Vol.127 (5), p.659-668
Hauptverfasser: THURSTON, Tom J, BRERETON, Richard G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 5
container_start_page 659
container_title Analyst (London)
container_volume 127
creator THURSTON, Tom J
BRERETON, Richard G
description Several methods are described for determining rate constants for second order reactions of the form U + V --> W using chemometrics and hard modelling to analyse UV absorption spectroscopic data, where all species absorb with comparable concentrations and extinctions. An interesting feature of this type of reaction is that the number of steps in the reaction is less than the number of absorbing species, resulting in a rank-deficient response matrix. This can cause problems when using some of the methods described in the literature. The approaches discussed in the paper depend, in part, on what knowledge is available about the system, including the spectra of the reactants and product, the initial concentrations and the exact kinetics. Sometimes some of this information may not be available or may be hard to estimate. Five groups of methods are discussed, namely use of multiple linear regression to obtain concentration profiles and fit kinetics information, rank augmentation using multiple batch runs, difference spectra based approaches, mixed spectral approaches which treat the reaction as two independent pseudospecies, and principal components regression. Two datasets are simulated, one where the spectra are quite different and the other where the spectrum of one reactant and the product share a high degree of overlap. Three sources of error are considered, namely sampling error, instrumental noise and errors in initial concentrations. The relative merits of each method are discussed.
doi_str_mv 10.1039/b111051a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71847100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71847100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-dbe3537449c8f426417b44fe92d5e8b69ad6654484090942a527e269bf85bccf3</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMozjgK_gLJRnFTzbOPpQzjAwbc6E4oaZo40bbR3BTx3xudyqwu5_Kdyz0HoVNKrijh1XVDKSWSqj00pzwXmZSs3EdzQgjPWC7FDB0BvCWZKHKIZpSRkhIh5-hlBdH1Kjo_YG8xGO2HFvvQmoCDigYnDVENEfAIbnjFemN635sYnMZpbHwL-MvFDX53g4lp-WcIyiXLMTqwqgNzMs0Fer5dPS3vs_Xj3cPyZp1pzqqYtY3hkhdCVLq0guWCFo0Q1lSslaZs8kq1eQohSkEqUgmmJCsMy6vGlrLR2vIFutje_Qj-czQQ696BNl2nBuNHqAtaioKmMhbocgvq4AGCsfVHSOnDd01J_dtk_d9kQs-mm2PTm3YHTtUl4HwCFGjV2aAG7WDH8fSypJL_AP8Je3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71847100</pqid></control><display><type>article</type><title>Estimation of second order rate constants using chemometric methods with kinetic constraints</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>THURSTON, Tom J ; BRERETON, Richard G</creator><creatorcontrib>THURSTON, Tom J ; BRERETON, Richard G</creatorcontrib><description>Several methods are described for determining rate constants for second order reactions of the form U + V --&gt; W using chemometrics and hard modelling to analyse UV absorption spectroscopic data, where all species absorb with comparable concentrations and extinctions. An interesting feature of this type of reaction is that the number of steps in the reaction is less than the number of absorbing species, resulting in a rank-deficient response matrix. This can cause problems when using some of the methods described in the literature. The approaches discussed in the paper depend, in part, on what knowledge is available about the system, including the spectra of the reactants and product, the initial concentrations and the exact kinetics. Sometimes some of this information may not be available or may be hard to estimate. Five groups of methods are discussed, namely use of multiple linear regression to obtain concentration profiles and fit kinetics information, rank augmentation using multiple batch runs, difference spectra based approaches, mixed spectral approaches which treat the reaction as two independent pseudospecies, and principal components regression. Two datasets are simulated, one where the spectra are quite different and the other where the spectrum of one reactant and the product share a high degree of overlap. Three sources of error are considered, namely sampling error, instrumental noise and errors in initial concentrations. The relative merits of each method are discussed.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/b111051a</identifier><identifier>PMID: 12081045</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Analyst (London), 2002-05, Vol.127 (5), p.659-668</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-dbe3537449c8f426417b44fe92d5e8b69ad6654484090942a527e269bf85bccf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13654515$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12081045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>THURSTON, Tom J</creatorcontrib><creatorcontrib>BRERETON, Richard G</creatorcontrib><title>Estimation of second order rate constants using chemometric methods with kinetic constraints</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Several methods are described for determining rate constants for second order reactions of the form U + V --&gt; W using chemometrics and hard modelling to analyse UV absorption spectroscopic data, where all species absorb with comparable concentrations and extinctions. An interesting feature of this type of reaction is that the number of steps in the reaction is less than the number of absorbing species, resulting in a rank-deficient response matrix. This can cause problems when using some of the methods described in the literature. The approaches discussed in the paper depend, in part, on what knowledge is available about the system, including the spectra of the reactants and product, the initial concentrations and the exact kinetics. Sometimes some of this information may not be available or may be hard to estimate. Five groups of methods are discussed, namely use of multiple linear regression to obtain concentration profiles and fit kinetics information, rank augmentation using multiple batch runs, difference spectra based approaches, mixed spectral approaches which treat the reaction as two independent pseudospecies, and principal components regression. Two datasets are simulated, one where the spectra are quite different and the other where the spectrum of one reactant and the product share a high degree of overlap. Three sources of error are considered, namely sampling error, instrumental noise and errors in initial concentrations. The relative merits of each method are discussed.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMozjgK_gLJRnFTzbOPpQzjAwbc6E4oaZo40bbR3BTx3xudyqwu5_Kdyz0HoVNKrijh1XVDKSWSqj00pzwXmZSs3EdzQgjPWC7FDB0BvCWZKHKIZpSRkhIh5-hlBdH1Kjo_YG8xGO2HFvvQmoCDigYnDVENEfAIbnjFemN635sYnMZpbHwL-MvFDX53g4lp-WcIyiXLMTqwqgNzMs0Fer5dPS3vs_Xj3cPyZp1pzqqYtY3hkhdCVLq0guWCFo0Q1lSslaZs8kq1eQohSkEqUgmmJCsMy6vGlrLR2vIFutje_Qj-czQQ696BNl2nBuNHqAtaioKmMhbocgvq4AGCsfVHSOnDd01J_dtk_d9kQs-mm2PTm3YHTtUl4HwCFGjV2aAG7WDH8fSypJL_AP8Je3M</recordid><startdate>20020502</startdate><enddate>20020502</enddate><creator>THURSTON, Tom J</creator><creator>BRERETON, Richard G</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020502</creationdate><title>Estimation of second order rate constants using chemometric methods with kinetic constraints</title><author>THURSTON, Tom J ; BRERETON, Richard G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-dbe3537449c8f426417b44fe92d5e8b69ad6654484090942a527e269bf85bccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>THURSTON, Tom J</creatorcontrib><creatorcontrib>BRERETON, Richard G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>THURSTON, Tom J</au><au>BRERETON, Richard G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of second order rate constants using chemometric methods with kinetic constraints</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2002-05-02</date><risdate>2002</risdate><volume>127</volume><issue>5</issue><spage>659</spage><epage>668</epage><pages>659-668</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>Several methods are described for determining rate constants for second order reactions of the form U + V --&gt; W using chemometrics and hard modelling to analyse UV absorption spectroscopic data, where all species absorb with comparable concentrations and extinctions. An interesting feature of this type of reaction is that the number of steps in the reaction is less than the number of absorbing species, resulting in a rank-deficient response matrix. This can cause problems when using some of the methods described in the literature. The approaches discussed in the paper depend, in part, on what knowledge is available about the system, including the spectra of the reactants and product, the initial concentrations and the exact kinetics. Sometimes some of this information may not be available or may be hard to estimate. Five groups of methods are discussed, namely use of multiple linear regression to obtain concentration profiles and fit kinetics information, rank augmentation using multiple batch runs, difference spectra based approaches, mixed spectral approaches which treat the reaction as two independent pseudospecies, and principal components regression. Two datasets are simulated, one where the spectra are quite different and the other where the spectrum of one reactant and the product share a high degree of overlap. Three sources of error are considered, namely sampling error, instrumental noise and errors in initial concentrations. The relative merits of each method are discussed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>12081045</pmid><doi>10.1039/b111051a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2002-05, Vol.127 (5), p.659-668
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_miscellaneous_71847100
source Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Estimation of second order rate constants using chemometric methods with kinetic constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20second%20order%20rate%20constants%20using%20chemometric%20methods%20with%20kinetic%20constraints&rft.jtitle=Analyst%20(London)&rft.au=THURSTON,%20Tom%20J&rft.date=2002-05-02&rft.volume=127&rft.issue=5&rft.spage=659&rft.epage=668&rft.pages=659-668&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/b111051a&rft_dat=%3Cproquest_cross%3E71847100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71847100&rft_id=info:pmid/12081045&rfr_iscdi=true